Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(11): e9511, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36407899

ABSTRACT

The obesity epidemic, largely driven by the accessibility of ultra-processed high-energy foods, is one of the most pressing public health challenges of the 21st century. Consequently, there is increasing concern about the impacts of diet-induced obesity on behavior and cognition. While research on this matter continues, to date, no study has explicitly investigated the effect of obesogenic diet on variance and covariance (correlation) in behavioral traits. Here, we examined how an obesogenic versus control diet impacts means and (co-)variances of traits associated with body condition, behavior, and cognition in a laboratory population of ~160 adult zebrafish (Danio rerio). Overall, an obesogenic diet increased variation in several zebrafish traits. Zebrafish on an obesogenic diet were significantly heavier and displayed higher body weight variability; fasting blood glucose levels were similar between control and treatment zebrafish. During behavioral assays, zebrafish on the obesogenic diet displayed more exploratory behavior and were less reactive to video stimuli with conspecifics during a personality test, but these significant differences were sex-specific. Zebrafish on an obesogenic diet also displayed repeatable responses in aversive learning tests whereas control zebrafish did not, suggesting an obesogenic diet resulted in more consistent, yet impaired, behavioral responses. Where behavioral syndromes existed (inter-class correlations between personality traits), they did not differ between obesogenic and control zebrafish groups. By integrating a multifaceted, holistic approach that incorporates components of (co-)variances, future studies will greatly benefit by quantifying neglected dimensions of obesogenic diets on behavioral changes.

2.
Ecol Evol ; 12(10): e9423, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36311397

ABSTRACT

The obesity epidemic is concerning as obesity appears to negatively impact cognition and behavior. Furthermore, some studies suggest that this negative effect could be carried across generations from both mothers and fathers although evidence is not consistent. Here, we attempt to address how obesogenic diets in the parental generation (F0) can impact offspring's cognition and anxiety intergenerationally (F1) in a zebrafish model. We compare both mean trait values and their variances. Using a multifactorial design, we created a total of four groups: F1T (treatment mothers × treatment fathers); F1M (treatment mothers × control fathers); F1P (treatment fathers × control mothers); and F1C (control mothers × control fathers, F1C); and subjected them to anxiety tank tests and aversive learning assays. When both parents were exposed, offspring (F1T) displayed the poorest aversive learning, while offspring that only had one parent exposed (F1P and F1M) learnt the aversive learning task the best. Zebrafish in all groups displayed no statistically significant differences in anxiety-associated behaviors. Males and females also performed similarly in both anxiety and aversive learning assays. While all F1 groups had similar levels of fasting blood glucose, variance in glucose levels were reduced in F1P and F1T indicating the importance of investigating heteroskedasticity between groups. Furthermore, anxiety behaviors of these two groups appeared to be less repeatable. To our knowledge, this is the first study to test the intergenerational effects of an obesogenic diet on zebrafish cognition. Our multifactorial design as well as repeated tests also allowed us to disentangle maternal and paternal effects (as well as combined effects) and accurately detect subtle information such as between-individual variation.

3.
J Exp Biol ; 224(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34087936

ABSTRACT

Aversive learning - avoiding certain situations based on negative experiences - can profoundly increase fitness in animal species, yet no studies have systematically quantified its repeatability. Therefore, we assessed the repeatability of aversive learning by conditioning approximately 100 zebrafish (Danio rerio) to avoid a colour cue associated with a mild electric shock. Across eight different colour conditions, zebrafish did not show consistent individual differences in aversive learning (R=0.04). Within conditions, when zebrafish were conditioned to the same colour, blue conditioning was more repeatable than green conditioning (R=0.15 and R=0.02). Overall, aversive learning responses of zebrafish were weak and variable. We speculate that the effect of aversive learning might have been too weak to quantify consistent individual differences, or directional selection might have eroded additive genetic variance. We also discuss how confounded repeatability assays and publication bias could have inflated estimates of repeatability in the literature.


Subject(s)
Behavior, Animal , Zebrafish , Animals , Learning , Zebrafish/genetics
4.
J Neurosci Methods ; 356: 109138, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33753125

ABSTRACT

BACKGROUND: Zebrafish (Danio rerio) are increasingly being used to model anxiety. A common behavioral assay employed for assessing anxiety-like behaviors in zebrafish is the "novel tank test". We hypothesized that using deeper tanks in this test would result in greater between-individual variation in behavioral responses and a more 'repeatable' assay. NEW METHODS: After mapping the literature and identifying common behavioral parameters used in analysis, we performed novel tank anxiety tests in both custom-designed 'tall' tanks with increased depth and 'short' trapezoidal tanks. We compared the repeatability of the behavioral parameters between tall and short tanks and also investigated sex differences. RESULTS: Overall, regardless of tank depth, almost all behavioral parameters associated with anxiety in zebrafish were significantly repeatable (R = 0.24 to 0.60). Importantly, our tall tanks better captured between-individual differences, resulting in higher repeatability estimates (average repeatability tall tanks: R = 0.46; average repeatability short tanks: R = 0.36) and clearer sex differences. CONCLUSIONS: Our assay using tall tanks has advantages over tests based on short tanks which underestimate repeatability. We argue that use of deeper tanks will improve the reliability of behavioral data across studies using novel tank tests for zebrafish. Our results also call for increased attention in designing the most appropriate assay in biomedical and behavioral sciences as current methods may lack the sensitivity to detect subtle, yet important, information, such as between-individual variation, an important component in assessing the reliability of behavioral data.


Subject(s)
Individuality , Zebrafish , Animals , Anxiety/diagnosis , Behavior, Animal , Female , Male , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...