Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Genome ; 17(1): e20412, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37968867

ABSTRACT

Wheat (Triticum aestivum L.) is crucial to global food security but is often threatened by diseases, pests, and environmental stresses. Wheat-stem sawfly (Cephus cinctus Norton) poses a major threat to food security in the United States, and solid-stem varieties, which carry the stem-solidness locus (Sst1), are the main source of genetic resistance against sawfly. Marker-assisted selection uses molecular markers to identify lines possessing beneficial haplotypes, like that of the Sst1 locus. In this study, an R package titled "HaploCatcher" was developed to predict specific haplotypes of interest in genome-wide genotyped lines. A training population of 1056 lines genotyped for the Sst1 locus, known to confer stem solidness, and genome-wide markers was curated to make predictions of the Sst1 haplotypes for 292 lines from the Colorado State University wheat breeding program. Predicted Sst1 haplotypes were compared to marker-derived haplotypes. Our results indicated that the training set was substantially predictive, with kappa scores of 0.83 for k-nearest neighbors and 0.88 for random forest models. Forward validation on newly developed breeding lines demonstrated that a random forest model, trained on the total available training data, had comparable accuracy between forward and cross-validation. Estimated group means of lines classified by haplotypes from PCR-derived markers and predictive modeling did not significantly differ. The HaploCatcher package is freely available and may be utilized by breeding programs, using their own training populations, to predict haplotypes for whole-genome sequenced early generation material.


Subject(s)
Hymenoptera , Plant Breeding , Humans , Animals , Haplotypes , Triticum/genetics , Genotype
2.
Front Plant Sci ; 14: 1247680, 2023.
Article in English | MEDLINE | ID: mdl-37786514

ABSTRACT

Introduction: Polyphenol oxidases (PPO) are dual activity metalloenzymes that catalyse the production of quinones. In plants, PPO activity may contribute to biotic stress resistance and secondary metabolism but is undesirable for food producers because it causes the discolouration and changes in flavour profiles of products during post-harvest processing. In wheat (Triticum aestivum L.), PPO released from the aleurone layer of the grain during milling results in the discolouration of flour, dough, and end-use products, reducing their value. Loss-of-function mutations in the PPO1 and PPO2 paralogous genes on homoeologous group 2 chromosomes confer reduced PPO activity in the wheat grain. However, limited natural variation and the proximity of these genes complicates the selection of extremely low-PPO wheat varieties by recombination. The goal of the current study was to edit all copies of PPO1 and PPO2 to drive extreme reductions in PPO grain activity in elite wheat varieties. Results: A CRISPR/Cas9 construct with one single guide RNA (sgRNA) targeting a conserved copper binding domain was used to edit all seven PPO1 and PPO2 genes in the spring wheat cultivar 'Fielder'. Five of the seven edited T1 lines exhibited significant reductions in PPO activity, and T2 lines had PPO activity up to 86.7% lower than wild-type. The same construct was transformed into the elite winter wheat cultivars 'Guardian' and 'Steamboat', which have five PPO1 and PPO2 genes. In these varieties PPO activity was reduced by >90% in both T1 and T2 lines. In all three varieties, dough samples from edited lines exhibited reduced browning. Discussion: This study demonstrates that multi-target editing at late stages of variety development could complement selection for beneficial alleles in crop breeding programs by inducing novel variation in loci inaccessible to recombination.

3.
Plant Genome ; 16(3): e20353, 2023 09.
Article in English | MEDLINE | ID: mdl-37194437

ABSTRACT

Fusarium head blight (FHB) is an economically and environmentally concerning disease of wheat (Triticum aestivum L). A two-pronged approach of marker-assisted selection coupled with genomic selection has been suggested when breeding for FHB resistance. A historical dataset comprised of entries in the Southern Uniform Winter Wheat Scab Nursery (SUWWSN) from 2011 to 2021 was partitioned and used in genomic prediction. Two traits were curated from 2011 to 2021 in the SUWWSN: percent Fusarium damaged kernels (FDK) and deoxynivalenol (DON) content. Heritability was estimated for each trait-by-environment combination. A consistent set of check lines was drawn from each year in the SUWWSN, and k-means clustering was performed across environments to assign environments into clusters. Two clusters were identified as FDK and three for DON. Cross-validation on SUWWSN data from 2011 to 2019 indicated no outperforming training population in comparison to the combined dataset. Forward validation for FDK on the SUWWSN 2020 and 2021 data indicated a predictive accuracy r ≈ 0.58 $r \approx 0.58$ and r ≈ 0.53 $r \approx 0.53$ , respectively. Forward validation for DON indicated a predictive accuracy of r ≈ 0.57 $r \approx 0.57$ and r ≈ 0.45 $r \approx 0.45$ , respectively. Forward validation using environments in cluster one for FDK indicated a predictive accuracy of r ≈ 0.65 $r \approx 0.65$ and r ≈ 0.60 $r \approx 0.60$ , respectively. Forward validation using environments in cluster one for DON indicated a predictive accuracy of r ≈ 0.67 $r \approx 0.67$ and r ≈ 0.60 $r \approx 0.60$ , respectively. These results indicated that selecting environments based on check performance may produce higher forward prediction accuracies. This work may be used as a model for utilizing public resources for genomic prediction of FHB resistance traits across public wheat breeding programs.


Subject(s)
Fusarium , Triticum , Triticum/genetics , Plant Breeding , Plant Diseases/genetics , Genomics
4.
Front Plant Sci ; 12: 715314, 2021.
Article in English | MEDLINE | ID: mdl-34745156

ABSTRACT

Many studies have evaluated the effectiveness of genomic selection (GS) using cross-validation within training populations; however, few have looked at its performance for forward prediction within a breeding program. The objectives for this study were to compare the performance of naïve GS (NGS) models without covariates and multi-trait GS (MTGS) models by predicting two years of F4: 7 advanced breeding lines for three Fusarium head blight (FHB) resistance traits, deoxynivalenol (DON) accumulation, Fusarium damaged kernels (FDK), and severity (SEV) in soft red winter wheat and comparing predictions with phenotypic performance over two years of selection based on selection accuracy and response to selection. On average, for DON, the NGS model correctly selected 69.2% of elite genotypes, while the MTGS model correctly selected 70.1% of elite genotypes compared with 33.0% based on phenotypic selection from the advanced generation. During the 2018 breeding cycle, GS models had the greatest response to selection for DON, FDK, and SEV compared with phenotypic selection. The MTGS model performed better than NGS during the 2019 breeding cycle for all three traits, whereas NGS outperformed MTGS during the 2018 breeding cycle for all traits except for SEV. Overall, GS models were comparable, if not better than phenotypic selection for FHB resistance traits. This is particularly helpful when adverse environmental conditions prohibit accurate phenotyping. This study also shows that MTGS models can be effective for forward prediction when there are strong correlations between traits of interest and covariates in both training and validation populations.

5.
Plant Genome ; 14(1): e20082, 2021 03.
Article in English | MEDLINE | ID: mdl-33595199

ABSTRACT

Stripe rust, or yellow rust (Puccinia striiformis Westend. f. sp. tritic), is a disease of wheat (Triticum aestivum L.) historically causing significant economic losses in cooler growing regions. Novel isolates of stripe rust with increased tolerance for high temperatures were detected in the United States circa 2000. This increased heat tolerance puts geographic regions, such as the soft red winter wheat (SRWW) growing region of the southeastern United States, at greater risk of stripe rust induced losses. In order to identify sources of stripe rust resistance in contemporary germplasm, we conducted genome-wide association (GWA) studies on stripe rust severity measured in two panels. The first consisted of 273 older varieties, landraces, and some modern elite breeding lines and was evaluated in environments in the U.S. Pacific Northwest and the southeastern United States. The second panel consisted of 588 modern, elite SRWW breeding lines and was evaluated in four environments in Arkansas and Georgia. The analyses identified three major resistance loci on chromosomes: 2AS (presumably the 2NS:2AS alien introgression from Aegilops ventricosa Tausch; syn. Ae. caudata L.), 3BS, and 4BL. The 4BL locus explained a greater portion of variance in resistance than either the 2AS or 3BS loci in southeastern environments. However, its effects were unstable across different environments and sets of germplasm, possibly a result of its involvement in epistatic interactions. Relatively few lines carry resistance alleles at all three loci, suggesting that there is a pre-existing reservoir of enhanced stripe rust resistance that may be further exploited by regional breeding programs.


Subject(s)
Disease Resistance , Triticum , Chromosome Mapping , Disease Resistance/genetics , Genome-Wide Association Study , Plant Breeding , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/genetics , United States
6.
Front Plant Sci ; 10: 1481, 2019.
Article in English | MEDLINE | ID: mdl-31850009

ABSTRACT

Moderate heat stress accompanied by short episodes of extreme heat during the post-anthesis stage is common in most US wheat growing areas and causes substantial yield losses. Sink strength (grain number) is a key yield limiting factor in modern wheat varieties. Increasing spike fertility (SF) and improving the partitioning of assimilates can optimize sink strength which is essential to improve wheat yield potential under a hot and humid environment. A genome-wide association study (GWAS) allows identification of novel quantitative trait loci (QTLs) associated with SF and other partitioning traits that can assist in marker assisted breeding. In this study, GWAS was performed on a soft wheat association mapping panel (SWAMP) comprised of 236 elite lines using 27,466 single nucleotide polymorphisms (SNPs). The panel was phenotyped in two heat stress locations over 3 years. GWAS identified 109 significant marker-trait associations (MTAs) (p ≤ 9.99 x 10-5) related to eight phenotypic traits including SF (a major component of grain number) and spike harvest index (SHI, a major component of grain weight). MTAs detected on chromosomes 1B, 3A, 3B, and 5A were associated with multiple traits and are potentially important targets for selection. More than half of the significant MTAs (60 out of 109) were found in genes encoding different types of proteins related to metabolism, disease, and abiotic stress including heat stress. These MTAs could be potential targets for further validation study and may be used in marker-assisted breeding for improving wheat grain yield under post-anthesis heat stress conditions. This is the first study to identify novel QTLs associated with SF and SHI which represent the major components of grain number and grain weight, respectively, in wheat.

SELECTION OF CITATIONS
SEARCH DETAIL
...