Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Res ; 207: 112183, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34637759

ABSTRACT

In urban ecosystems, microbes play a key role in maintaining major ecological functions that directly support human health and city life. However, the knowledge about the species composition and functions involved in urban environments is still limited, which is largely due to the lack of reference genomes in metagenomic studies comprises more than half of unclassified reads. Here we uncovered 732 novel bacterial species from 4728 samples collected from various common surface with the matching materials in the mass transit system across 60 cities by the MetaSUB Consortium. The number of novel species is significantly and positively correlated with the city population, and more novel species can be identified in the skin-associated samples. The in-depth analysis of the new gene catalog showed that the functional terms have a significant geographical distinguishability. Moreover, we revealed that more biosynthetic gene clusters (BGCs) can be found in novel species. The co-occurrence relationship between BGCs and genera and the geographical specificity of BGCs can also provide us more information for the synthesis pathways of natural products. Expanded the known urban microbiome diversity and suggested additional mechanisms for taxonomic and functional characterization of the urban microbiome. Considering the great impact of urban microbiomes on human life, our study can also facilitate the microbial interaction analysis between human and urban environment.


Subject(s)
Metagenome , Microbiota , Bacteria/genetics , Humans , Metagenomics , Microbial Interactions , Microbiota/genetics
2.
Forensic Sci Int Genet ; 48: 102356, 2020 09.
Article in English | MEDLINE | ID: mdl-32712568

ABSTRACT

The application of massively parallel sequencing (MPS) to forensic genetics has led to improvements in multiple aspects of DNA analysis, however, additional complexities are concurrently associated with these advances. In relation to short tandem repeat (STR) typing, the move to sequence rather than length-based methodologies has highlighted the extent to which previous allelic variation was masked - both within and outside of the repeat regions (the flanking regions). In order to fully implement MPS for autosomal STR analysis, sequence-based allelic frequencies must be available, and concordance with previous typing techniques needs to be assessed. In this work, a series of samples (n = 1007) from five different population groups were genotyped using the MiSeq FGx™ Forensic Genomics System. Results were compared to those obtained using capillary electrophoresis (CE), and sequence variation has been characterised both within and outside STR repeat regions, with allelic frequencies provided for all variants observed within this database. Analysing and characterising flanking region sequence is currently less straightforward than studying repeat region variation alone, and the added value of doing so remains largely unexplored - this paper provides data to show that the gain in polymorphism achieved when analysing flanking regions is less than might be expected. In the White British population for example, including the sequence variation within repeat regions of 26 autosomal STRs made the average combined random match probability (RMP) over 700 times lower than with length-based alleles alone. Including the sequence variation within the flanking regions only resulted in a combined RMP that was a further 4 times lower.


Subject(s)
Gene Frequency , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , DNA Fingerprinting , Electrophoresis, Capillary , Genetic Variation , Genotype , Humans , Racial Groups/genetics , Sequence Analysis, DNA
3.
Forensic Sci Int ; 314: 110366, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32683271

ABSTRACT

Microbial Forensics is a field that continues to grow in interest and application among the forensic community. This review, divided into two sections, covers several topics associated with this new field. The first section presents a historic overview concerning the use of microorganisms (or its product, i.e. toxins) as harmful biological agents in the context of biological warfare (biowarfare), bioterrorism, and biocrime. Each case is illustrated with the examination of case reports that span from prehistory to the present day. The second part of the manuscript is devoted to the role of MF and highlights the necessity to prepare for the pressing threat of the harmful use of biological agents as weapons. Preventative actions, developments within the field to ensure a timely and effective response and are discussed herein.


Subject(s)
Biological Warfare/history , Bioterrorism/history , Crime/history , Bacterial Infections , Forensic Sciences , HIV Infections , High-Throughput Screening Assays , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Ancient , History, Medieval , Humans , Machine Learning , Microbiological Techniques , Toxins, Biological/adverse effects
4.
Forensic Sci Int Genet ; 34: 57-61, 2018 05.
Article in English | MEDLINE | ID: mdl-29413636

ABSTRACT

By using sequencing technology to genotype loci of forensic interest it is possible to simultaneously target autosomal, X and Y STRs as well as identity, ancestry and phenotypic informative SNPs, resulting in a breadth of data obtained from a single run that is considerable when compared to that generated with standard technologies. It is important however that this information aligns with the genotype data currently obtained using commercially available kits for CE-based investigations such that results are compatible with existing databases and hence can be of use to the forensic community. In this work, 400 samples were typed using commercially available STR kits and CE, as well as using the Ilumina ForenSeq™ DNA Signature Prep Kit and MiSeq® FGx to assess concordance of autosomal STRs and population variability. Results show a concordance rate between the two technologies exceeding 99.98% while numerous novel sequence based alleles are described. In order to make use of the sequence variation observed, sequence specific allele frequencies were generated for White British and British Chinese populations.


Subject(s)
Asian People/genetics , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Sequence Analysis, DNA , White People/genetics , Alleles , DNA Fingerprinting , Electrophoresis, Capillary , Gene Frequency , Humans , Polymerase Chain Reaction , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...