Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38965111

ABSTRACT

Cadmium (Cd) poses serious threats to plant growth and development, whereas the use of plant growth-promoting rhizobacteria (PGPR) has emerged a promising approach to diminish Cd retention in crops. A pot experiment was conducted to evaluate the effect of Cd tolerant strain Acinetobacter sp. SG-5 on growth, phytohormonal response, and Cd uptake of two maize cultivars (3062 and 31P41) under various Cd stress levels (0, 5, 12, 18, 26, and 30 µM CdCl2). The results revealed that CdCl2 treatment significantly suppressed the seed germination and growth together with higher Cd retention in maize cultivars in a dose-dependent and cultivar-specific manner with pronounced negative effect in 31P41. However, SG-5 strain exerted positive impact by up-regulating seed germination traits, plant biomass, photosynthetic pigments, enzymatic and non-enzymatic antioxidants, endogenous hormone level indole-3-acetic acid (IAA), abscisic acid (ABA), and sustained optimal nutrient's levels in both cultivars but predominantly in Cd-sensitive one (31P41). Further, Cd-resistant PGPR decreased the formation of reactive oxygen species in terms of malondialdehyde (MDA) and hydrogen peroxide (H2O2) verified through 3, 3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) analysis in conjunction with reduced Cd uptake and translocation in maize root and shoots in comparison to controls, advocating its sufficiency for bacterial-assisted Cd bioremediation. In conclusion, both SG-5 inoculated cultivars exhibited maximum Cd tolerance but substantial Cd tolerance was acquired by Cd susceptible cultivar-31P41 than Cd-tolerant one (3062). Current work recommended SG-5 strain as a promising candidate for plant growth promotion and bacterial-assisted phytomanagement of metal-polluted agricultural soils.

2.
BMC Plant Biol ; 24(1): 36, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191323

ABSTRACT

Maize cultivated for dry grain covers approximately 197 million hectares globally, securing its position as the second most widely grown crop worldwide after wheat. Although spermidine and biochar individually showed positive impacts on maize production in existing literature, their combined effects on maize growth, physiology, nutrient uptake remain unclear and require further in-depth investigation. That's why a pot experiment was conducted on maize with spermidine and potassium enriched biochar (KBC) as treatments in Multan, Pakistan, during the year 2022. Four levels of spermidine (0, 0.15, 0.30, and 0.45mM) and two levels of potassium KBC (0 and 0.50%) were applied in completely randomized design (CRD). Results showed that 0.45 mM spermidine under 0.50% KBC caused significant enhancement in maize shoot length (11.30%), shoot fresh weight (25.78%), shoot dry weight (17.45%), root length (27.95%), root fresh weight (26.80%), and root dry weight (20.86%) over control. A significant increase in maize chlorophyll a (50.00%), chlorophyll b (40.40%), total chlorophyll (47.00%), photosynthetic rate (34.91%), transpiration rate (6.51%), and stomatal conductance (15.99%) compared to control under 0.50%KBC validate the potential of 0.45 mM spermidine. An increase in N, P, and K concentration in the root and shoot while decrease in electrolyte leakage and antioxidants also confirmed that the 0.45 mM spermidine performed more effectively with 0.50%KBC. In conclusion, 0.45 mM spermidine with 0.50%KBC is recommended for enhancing maize growth.


Subject(s)
Potassium , Zea mays , Chlorophyll A , Spermidine/pharmacology
3.
Environ Sci Pollut Res Int ; 30(46): 103141-103152, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37682438

ABSTRACT

Arsenic (As) is a naturally occurring element that is found in soil, water, and rocks. However, it can also be released into the environment through human activities. Arsenic is considered an environmental hazard because it is toxic to humans and animals and can cause serious health problems. Additionally, As-contaminated soil can limit plant growth and reduce crop yields, leading to economic losses for farmers. So, decreasing metal/metalloid solubility in soil by synthetic and organic amendments leads to better crop productivity on contaminated soils. The current study aimed to evaluate farmyard manure (FYM)-mediated changes in soil arsenic (As) behavior, and subsequent effects on achene yield of sunflower. Treatment plan comprised of two As levels, i.e., As-60 (60 mg kg-1) and As-120 (120 mg kg-1), four FYM levels (0, 20, 35, and 50 g kg-1), three textural types (sandy, loamy and clayey), and replicated thrice. Seven As fractions including water soluble-As (WS-As), labile-As (L-As), calcium-bound As (Ca-As), aluminum-bound As (Al-As), iron-bound As (Fe-As), organic-matter-bound As (OM-As), and residual-As (R-As) were determined which differed significantly (P ≤ 0.05) with FYM and soil texture. FYM supplementation decreased WS-As, L-As, Ca-As, and Al-As while increased Fe-As, OM-As, and R-As. The immobilizing effect of FYM increased with increasing its rate of application, and maximum effect was found in clayey soil. As speciation in soil also significantly (P ≤ 0.05) affected by FYM and soil texture, with a reduction in arsenate while increase in arsenite, mono-methyl arsenate, and di-methyl arsenate with increasing the rate of FYM supplementation. Bioaccumulation factor reduced with FYM addition, and highest reduction of 38.65 and 42.13% in sandy, 34.24 and 36.26% in loamy while 29.16 and 35.10% in clayey soils at As-60 and As-120, respectively, by 50 g kg-1 FYM compared with respective As treatments without FYM. As accumulation in plant parts was significantly (P ≤ 0.05) reduced by FYM with the subsequent improvement in achene yield.

4.
Life (Basel) ; 13(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36836855

ABSTRACT

The hormonal imbalances, including abscisic acid (ABA) and brassinosteroid (BR) levels, caused by salinity constitute a key factor in hindering spikelet development in rice and in reducing rice yield. However, the effects of ABA and BRs on spikelet development in plants subjected to salinity stress have been explored to only a limited extent. In this research, the effect of ABA and BRs on rice growth characteristics and the development of spikelets under different salinity levels were investigated. The rice seedlings were subjected to three different salt stress levels: 0.0875 dS m-1 (Control, CK), low salt stress (1.878 dS m-1, LS), and heavy salt stress (4.09 dS m-1, HS). Additionally, independent (ABA or BR) and combined (ABA+BR) exogenous treatments of ABA (at 0 and 25 µM concentration) and BR (at 0 and 5 µM concentration) onto the rice seedlings were performed. The results showed that the exogenous application of ABA, BRs, and ABA+BRs triggered changes in physiological and agronomic characteristics, including photosynthesis rate (Pn), SPAD value, pollen viability, 1000-grain weight (g), and rice grain yield per plant. In addition, spikelet sterility under different salt stress levels (CK, LS, and HS) was decreased significantly through the use of both the single phytohormone and the cocktail, as compared to the controls. The outcome of this study reveals new insights about rice spikelet development in plants subjected to salt stress and the effects on this of ABA and BR. Additionally, it provides information on the use of plant hormones to improve rice yield under salt stress and on the enhancement of effective utilization of salt-affected soils.

5.
Sci Rep ; 11(1): 21057, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702930

ABSTRACT

Nutrient disorder and presence of disease-causing agents in soilless media negatively influence the growth of muskmelon. To combat these issues, use of environmentally-friendly sanitation techniques is crucial for increased crop productivity. The study was conducted under greenhouse and field conditions to investigate the effect of two different sanitation techniques: steaming and formalin fumigation on various media's characteristics and their impact on muskmelon yield. Media: jantar, guar, wheat straw and rice hull and peat moss of 10% air-filled porosity and sanitized with formalin and steaming. Steaming of guar, jantar, and wheat straw increased the phosphorus (P) and potassium (K) concentrations by 13.80-14.86% and 6.22-8.45% over formalin fumigation. Likewise, P and K concentrations in muskmelon were higher under steaming. Steaming significantly inhibited the survival of Fusarium wilt sp. melonis, root knot nematode sp. meloidogyne and nitrifying bacteria in media than formalin fumigation. In conclusion, steaming decreased the prevalence of nitrifying bacteria and pathogens which thus improved the NO3--N:NH4+-N ratios, P and K nutritional balance both in the media and muskmelon transplants. Hence, steaming as an environment-friendly approach is recommended for soilless media. Further, optimization of steaming for various composts with different crops needs to be investigated with steaming teachnique.


Subject(s)
Crop Production , Cucumis melo , Formaldehyde/pharmacology , Fumigation , Fusarium/growth & development , Plant Diseases/microbiology , Cucumis melo/growth & development , Cucumis melo/microbiology
6.
Physiol Mol Biol Plants ; 26(12): 2417-2433, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33424156

ABSTRACT

Cadmium (Cd) is highly toxic metal for plant metabolic processes even in low concentration due to its longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of a Cd-tolerant phytobeneficial bacterial strain Bacillus sp. SDA-4, isolated, characterized and identified from Chakera wastewater reservoir, Faisalabad, Pakistan, together with spinach (as a test plant) under different Cd regimes. Spinach plants were grown with and without Bacillus sp. SDA-4 inoculation in pots filled with 0, 5 or 10 mg kg-1 CdCl2-spiked soil. Without Bacillus sp. SDA-4 inoculation, spinach plants exhibited reduction in biomass accumulation, antioxidative enzymes and nutrient retention. However, plants inoculated with Bacillus sp. SDA-4 revealed significantly augmented growth, biomass accumulation and efficiency of antioxidative machinery with concomitant reduction in proline and MDA contents under Cd stress. Furthermore, application of Bacillus sp. SDA-4 assisted the Cd-stressed plants to sustain optimal levels of essential nutrients (N, P, K, Ca and Mg). It was inferred that the characterized Cd-tolerant PGPR strain, Bacillus sp. SDA-4 has a potential to reduce Cd uptake and lipid peroxidation which in turn maintained the optimum balance of nutrients and augmented the growth of Cd-stressed spinach. Analysis of bioconcentration factor (BCF) and translocation factor (TF) revealed that Bacillus sp. SDA-4 inoculation with spinach sequestered Cd in rhizospheric zone. Research outcomes are important for understanding morpho-physio-biochemical attributes of spinach-Bacillus sp. SDA-4 synergy which might provide efficient strategies to decrease Cd retention in edible plants and/or bioremediation of Cd polluted soil colloids.

7.
AoB Plants ; 11(4): plz036, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31321016

ABSTRACT

The present study was carried out to investigate how plant growth-promoting bacteria (PGPB) influence plant growth and uptake of boron (B) and phosphorus (P) in rapeseed (Brassica napus). Rapeseed was subjected to control, B, P and B + P treatments, either with or without B. pumilus (PGPB) inoculation, and grown in pot culture for 6 weeks. In the absence of B. pumilus, the addition of B, P or both elements improved the growth of rapeseed compared with the control. Interestingly, B. pumilus inoculation inhibited plant growth and enhanced B uptake under B and B + P but not under control and P conditions. In addition, B. pumilus inoculation decreased the pH of soil under B and B + P supplies. Bacillus pumilus inoculation thus increased rapeseed B uptake and inhibited growth under B supply, which suggests that the effects of PGPB on rapeseed growth depend on the addition of B to soil. Bacillus pumilus inoculation may therefore be recommended for the enhancement of rapeseed B levels in B-deficient soils but not in B-sufficient ones.

8.
Plant Physiol Biochem ; 108: 304-312, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27485620

ABSTRACT

Phosphorus (P) availability in alkaline soils of arid and semi-arid regions is a major constraint for decreased crop productivity. Use of plant growth promoting rhizobacteria (PGPR) may enhance plant growth through the increased plant antioxidation activity. Additionally, PGPR may increase nutrient uptake by plants as a result of induced root exudation and rhizosphere acidification. The current study was aimed to investigate combined effects of P and Pesudomonas putida (PGPR) on chickpea growth with reference to antioxidative enzymatic activity and root exudation mediated plant nutrient uptake, particularly P. Half of the seeds were soaked in PGPR solution, whereas others in sterile water and latter sown in soils. Plants were harvested 8 weeks after onset of experiment and analyzed for leaf nutrient contents, antioxidant enzymes activities and organic acids concentrations. Without PGPR, P application (+P) increased various plant growth attributes, plant uptake of P and Ca, soil pH, citric acid and oxalic acid concentrations, whereas decreased the leaf POD enzymatic activity as compared to the P-deficiency. PGPR supply both under -P and +P improved the plant growth, plant uptake of N, P, and K, antioxidative activity of SOD and POD enzymes and concentrations of organic acids, whereas reduced the rhizosphere soil pH. Growth enhancement by PGPR supply was related to higher plant antioxidation activity as well as nutrient uptake of chickpea including P as a result of root exudation mediated rhizosphere acidification.


Subject(s)
Cicer/growth & development , Cicer/microbiology , Phosphorus/pharmacokinetics , Pseudomonas putida/physiology , Antioxidants/metabolism , Biological Availability , Chlorophyll/metabolism , Cicer/metabolism , Citric Acid/metabolism , Enzymes/metabolism , Hydrogen-Ion Concentration , Malates/metabolism , Oxalic Acid/metabolism , Phosphorus/deficiency , Plant Exudates/metabolism , Plant Leaves/metabolism , Rhizosphere , Seeds/microbiology , Soil/chemistry
9.
Environ Sci Pollut Res Int ; 22(24): 19729-46, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26278901

ABSTRACT

The present study discusses elevated groundwater arsenic (As) and fluoride (F(-)) concentrations in Mailsi, Punjab, Pakistan, and links these elevated concentrations to health risks for the local residents. The results indicate that groundwater samples of two areas of Mailsi, Punjab were severely contaminated with As (5.9-507 ppb) and F(-) (5.5-29.6 ppm), as these values exceeded the permissible limits of World Health Organization (10 ppb for As and 1.5 ppm for F(-)). The groundwater samples were categorized by redox state. The major process controlling the As levels in groundwater was the adsorption of As onto PO4 (3-) at high pH. High alkalinity and low Ca(2+) and Mg(2+) concentrations promoted the higher F(-) and As concentrations in the groundwater. A positive correlation was observed between F(-) and As concentrations (r = 0.37; n = 52) and other major ions found in the groundwater of the studied area. The mineral saturation indices calculated by PHREEQC 2.1 suggested that a majority of samples were oversaturated with calcite and fluorite, leading to the dissolution of fluoride minerals at alkaline pH. Local inhabitants exhibited arsenicosis and fluorosis after exposure to environmental concentration doses of As and F(-). Estimated daily intake (EDI) and target hazard quotient (THQ) highlighted the risk factors borne by local residents. Multivariate statistical analysis further revealed that both geologic origins and anthropogenic activities contributed to As and F(-) contamination in the groundwater. We propose that pollutants originate, in part, from coal combusted at brick factories, and agricultural activities. Once generated, these pollutants were mobilized by the alkaline nature of the groundwater.


Subject(s)
Arsenic/analysis , Fluorides/analysis , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Coal/analysis , Environmental Monitoring , Humans , Multivariate Analysis , Pakistan , Risk Assessment
10.
Environ Monit Assess ; 187(6): 311, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25934052

ABSTRACT

The current study was aimed at analyzing the differential effects of heavy metals (cadmium and chromium) and mycorrhizal fungus; Glomus intraradices on growth, chlorophyll content, proline production, and metal accumulation in flax plant (Linum usitatissimum L.). Heavy metal accumulation rate in flax varied from 90 to 95 % for Cd and 61-84 % for Cr at a concentration range of 250 to 500 ppm for both metals in 24 days of experiment. Growth and photosynthetic activity of flax reduced to an average of 21 and 45 %, respectively. However, inoculation of G. intraradices significantly increased the plant biomass even under metal stressed conditions. Additionally, mycorrhizal association also assists the Cd and Cr increased uptake by 23 and 33 %, respectively. Due to metal stress, chlorophyll contents were decreased by 27 and 45 %, while 84 and 71 % increased proline content was observed under Cd and Cr stress, respectively. The present results clearly signify the differential response and potential of flax plant towards heavy metal tolerance and accumulation that can further increase with mycorrhizal fungus.


Subject(s)
Cadmium/toxicity , Chromium/toxicity , Flax/drug effects , Biomass , Chlorophyll/metabolism , Environmental Monitoring , Flax/physiology , Fungi/physiology , Mycorrhizae/drug effects , Photosynthesis/drug effects , Plant Roots/drug effects
11.
Int J Phytoremediation ; 17(10): 981-7, 2015.
Article in English | MEDLINE | ID: mdl-25763643

ABSTRACT

Plants show enhanced phytoremediation of heavy metal contaminated soils particularly in response to fungal inoculation. Present study was conducted to find out the influence of Nickel (Ni) toxicity on plant biomass, growth, chlorophyll content, proline production and metal accumulation by L. usitatissimum (flax) in the presence of Glomus intraradices. Flax seedlings of both inoculated with G. intraradices and non-inoculated were exposed to different concentrations i.e., 250, 350 and 500 ppm of Ni at different time intervals. Analysis of physiological parameters revealed that Ni depressed the growth and photosynthetic activity of plants. However, the inoculation of plants with arbuscular mycorrhizae (G. intraradices) partially helped in the alleviation of Ni toxicity as indicated by improved plant growth under Ni stress. Ni uptake of non- mycorrhizal flax plants was increased by 98% as compared to control conditions whereas inoculated plants showed 19% more uptake when compared with the non-inoculated plants. Mycorrhizal plants exhibited increasing capacity to remediate contaminated soils along with improved growth. Thus, AM assisted phytoremediation helps in the accumulation of Ni in plants to reclaim Ni toxic soils. Based on our findings, it can be concluded that the role of flax plants and mycorrhizal fungi is extremely important in phytoremediation.


Subject(s)
Flax/metabolism , Flax/microbiology , Glomeromycota/physiology , Mycorrhizae/physiology , Nickel/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Flax/drug effects , Flax/growth & development
12.
Environ Sci Pollut Res Int ; 22(12): 9193-203, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25586617

ABSTRACT

Cadmium (Cd) is a highly mobile toxic element in soil-plant systems that interferes with plant growth and nutrient acquisition by modulations in the rhizospheric environment. The current study investigated the influence of maize roots on the medium pH, alterations in nutrient uptake, and impact on the plant's physiological attributes under Cd stress. Among the nine maize cultivars, subjected to Cd stress (9.15 mg/kg of sand), one was identified as Cd tolerant (3062-Pioneer) and the second as Cd sensitive (31P41-Pioneer). The selected maize cultivars were grown in nutrient solutions supplemented with 0, 10, 20, 30, 40, or 50 µM CdCl2 under controlled conditions and a starting pH of 6.0. The rhizospheric pH dynamics were monitored each day up to 3 days. Both cultivars caused medium basification; however, the response was different at low (10 and 20 µM) Cd treatments (sensitive cultivar caused medium basification) and at higher (50 µM) Cd treatment (tolerant cultivar caused medium basification). Furthermore, higher Cd was accumulated by the sensitive cultivar which was predominantly found in the roots. Higher Cd levels in the medium resulted in increased uptake and translocation of both Cd and K (in the tolerant cultivar) or only Cd (in the sensitive cultivar). Uptake of other nutrients (Ca, Zn, and Fe) was antagonistically affected by Cd stress in both cultivars. Moreover, Cd stress significantly impaired chlorophyll content, catalase activity, and total protein content; irrespective of the genotype. The malondialdehyde (MDA) content was found to increase, in both cultivars, together with Cd level. However, the extent to which Cd interfered with the studied attributes was more pronounced in the sensitive cultivar as compared to the tolerant one. It is concluded that the maize roots responded to Cd stress by initiating modulations of medium pH which might be dependent on Cd tolerance levels. The study results may help to develop strategies to reduce Cd accumulation in maize and decontamination of metal-polluted soil sediments.


Subject(s)
Cadmium/toxicity , Rhizosphere , Soil Pollutants/toxicity , Zea mays/physiology , Hydrogen-Ion Concentration , Plant Roots/drug effects , Plant Roots/physiology , Zea mays/drug effects
13.
Ecotoxicol Environ Saf ; 113: 271-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25528377

ABSTRACT

Chromium (Cr), being a highly toxic metal, adversely affects the mineral uptake and metabolic processes in plants when present in excess. The current study was aimed at investigating the Cr accumulation in various plant tissues and its relation to the antioxidation activity and root exudation. Plants were grown in soil spiked with different concentrations of Cr for three weeks in pots and analysed for different growth, antioxidants and ion attributes. Furthermore, plants treated with different concentrations of Cr in pots were shifted to rhizobox-like system for 48h and organic acids were monitored in the mucilage dissolved from the plant root surface, mirroring rhizospheric solution. The results revealed that the Cr application at 1mM increased the shoot fresh and dry weight and root dry weight of Solanum nigrum, whereas the opposite was observed for Parthenium hysterophorus when compared with lower levels of Cr (0.5mM) or control treatment. In both plant species, Cr and Cl concentrations were increased while Ca, Mg and K concentrations in root, shoot and root exudates were decreased with increasing levels of Cr. Higher levels of Cr treatments enhanced the activities of SOD, POD and proline content in leaves of S. nigrum, whereas lower levels of Cr treatment were found to have stimulatory effects in P. hysterophorus. P. hysterophorus exhibited highest exudation of organic acid contents. With increasing levels of Cr treatments, citric acid concentration in root exudates increased by 35% and 44% in S. nigrum, whereas 20% and 76% in P. hysterophorus. Cr toxicity was responsible for the shoot growth reduction of S. nigrum and P. hysterophorus, however, shoot growth response was different at different levels of applied Cr. Consequently, Cr stress negatively altered the plant physiology and biochemistry. However, the enhanced antioxidant production, Cl uptake and root exudation are the physiological and biochemical indicators for the plant adaptations in biotic systems polluted with Cr.


Subject(s)
Antioxidants/metabolism , Asteraceae/metabolism , Chromium/metabolism , Plant Exudates/metabolism , Solanum nigrum/metabolism , Adaptation, Physiological , Asteraceae/drug effects , Asteraceae/growth & development , Biological Transport/drug effects , Carboxylic Acids/metabolism , Chromium/toxicity , Homeostasis , Oxidation-Reduction , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Proline/metabolism , Soil , Soil Pollutants/metabolism , Solanum nigrum/drug effects , Solanum nigrum/growth & development , Stress, Physiological
14.
Plant Physiol Biochem ; 56: 56-61, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22592001

ABSTRACT

Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 µM H3BO3 (control), 75 mM NaCl, 200 µM H3BO3, or 75 mM NaCl + 200 µM H3BO3, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses.


Subject(s)
Antioxidants/metabolism , Boron/adverse effects , Oxidative Stress , Peroxidases/metabolism , Plant Leaves/drug effects , Sodium Chloride/adverse effects , Triticum/drug effects , Biomass , Enzymes/metabolism , Germination , Hydroponics , Plant Diseases , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Triticum/growth & development , Triticum/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...