Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ergonomics ; : 1-14, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972717

ABSTRACT

Firefighters wear personal protective equipment to protect them from the thermal and chemical environment in which they operate. The self-contained breathing apparatus (SCBA) provides isolation of the airway from the hazardous fireground. National standards limit SCBA weight, however, integration of additional features could result in an SCBA exceeding the current limit. The purpose of this study was to examine the effects of increased SCBA weight on firefighters' physiological responses, work output, dynamic stability, and comfort. Completion of simulated firefighting activities induced a strong physiological response. Peak oxygen consumption was higher with the lightest SCBA than the heaviest SCBA. Few other physiological differences were noted as SCBA weight increased. Importantly, increased SCBA weight resulted in significantly more negative perceptions by the firefighters and a trend towards significance for the duration of work time prior to reaching volitional fatigue. These results should be considered when assessing changes to existing SCBA weight limits.


Increased SCBA weight above existing national standards resulted in negative perceptions by the firefighters, but not significant physiological changes after two simulated bouts of firefighting activity. SCBA weight had a nearly significant impact on the time firefighters worked before reaching volitional fatigue, with heavier SCBA trending towards decreased working time.

2.
Article in English | MEDLINE | ID: mdl-37372644

ABSTRACT

Firefighters are at an increased risk of cancer due to their occupational exposure to combustion byproducts, especially when those compounds penetrate the firefighter personal protective equipment (PPE) ensemble. This has led to questions about the impact of base layers (i.e., shorts vs. pants) under PPE ensembles. This study asked 23 firefighters to perform firefighting activities while wearing one of three different PPE ensembles with varying degrees of protection. Additionally, half of the firefighters unzipped their jackets after the scenario while the other half kept their jackets zipped for five additional minutes. Several volatile organic compound (VOC) and naphthalene air concentrations outside and inside of hoods, turnout jackets, and turnout pants were evaluated; biological (urinary and exhaled breath) samples were also collected. VOCs and naphthalene penetrated the three sampling areas (hoods, jackets, pants). Significant (p-value < 0.05) increases from pre- to post-fire for some metabolites of VOCs (e.g., benzene, toluene) and naphthalene were found. Firefighters wearing shorts and short sleeves absorbed higher amounts of certain compounds (p-value < 0.05), and the PPE designed with enhanced interface control features appeared to provide more protection from some compounds. These results suggest that firefighters can dermally absorb VOCs and naphthalene that penetrate the PPE ensemble.


Subject(s)
Air Pollutants, Occupational , Firefighters , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Air Pollutants, Occupational/analysis , Naphthalenes , Occupational Exposure/analysis , Personal Protective Equipment , Polycyclic Aromatic Hydrocarbons/analysis
3.
J Ind Text ; 532023 Nov 30.
Article in English | MEDLINE | ID: mdl-38529520

ABSTRACT

In 2022, the occupation of firefighting was categorized as a "Group 1" carcinogen, meaning it is known to be carcinogenic to humans. The personal protective equipment that structural firefighters wear is designed to safeguard them from thermal, physical, and chemical hazards while maintaining thermo-physiological comfort. Typically, the outer layer of structural turnout gear is finished with a durable water and oil-repellent (DWR) based on per- and polyfluoroalkyl substances (PFAS) that helps limit exposure to water and hazardous liquids. The PFAS-based aqueous emulsion typically used in DWR finishes is highly persistent and can cause various health problems if absorbed into the body through ingestion, inhalation, and/or dermal absorption. In response, the U.S. Fire Service has begun using non-PFAS water repellants in firefighter turnout gear. This study aims to evaluate the performance of both traditional PFAS-based and alternative non-PFAS outer shell materials. The study involved exposing both PFAS-based and non-PFAS DWR outer shell materials in turnout composites to simulated job exposures (i.e., weathering, thermal exposure, and laundering) that artificially aged the materials. After exposures, samples were evaluated for repellency, durability, thermal protection, and surface chemistry analysis to determine any potential performance trade-offs that may exist. Non-PFAS outer shell fabrics were found not to be diesel/oil-repellent, posing a potential flammability hazard if exposed to diesel and subsequent flame on an emergency response. Both PFAS-based and non-PFAS sets of fabrics performed similarly in terms of thermal protective performance, tearing strength, and water repellency. The surface analysis suggests that both PFAS and non-PFAS chemistries can degrade and shed from fabrics during the aging process. The study indicates that firefighters should be educated and trained regarding the potential performance trade-offs, such as oil absorption and flammability concerns when transitioning to non-PFAS outer shell materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...