Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34443156

ABSTRACT

For refractory application, amongst others, inorganic chemical binders are used to shape and process loose, unpacked materials. The binder influences the chemical composition within the ceramic body during setting, aging and firing and thus the finally reached properties of the refractory material. For an effective design of tailored materials with required properties, the mode of action of the binder systems should carefully be investigated. A combination of both structure analysis techniques and macroscopic property investigations proved to be a powerful tool for a detailed description of structure-property correlations. This is shown on the basis of X-ray powder diffraction and nuclear magnetic resonance spectroscopy analyses combined with observation of (thermo)mechanical and chemical investigations.

2.
ChemistryOpen ; 9(5): 631-636, 2020 05.
Article in English | MEDLINE | ID: mdl-32489769

ABSTRACT

Aluminum phosphates are known as inorganic hardening agents for the setting of alkali silicate solutions, but only few studies have been published on the setting mechanism of potassium water glass. The solution behavior of two aluminum metaphosphates in alkaline environments were investigated photometrically determining the dissolved aluminum content. The crystalline phase composition of the hardened potassium silicate systems was determined by X-ray diffraction. New insights into the setting mechanism were obtained concerning the structure of the aluminum metaphosphate and the SiO2/K2O ratio of three different potassium silicate solutions. With increasing pH value aluminum tetrametaphosphate reacts rapidly and forms crystalline potassium tetrametaphosphate dihydrate by an ion-exchange-reaction. In parallel, a depolymerization of the cyclic metaphosphate structure occurs leading to potassium dihydrogen phosphate as final fragmentation product. With aluminum hexametaphosphate no ion-exchange reaction product was observed. Only potassium dihydrogen phosphate could be found in higher quantities compared to the reaction with aluminum tetrametaphosphate.

SELECTION OF CITATIONS
SEARCH DETAIL
...