Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Biomech Eng ; 146(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38071487

ABSTRACT

In recent conflicts, blast injury from landmines and improvised explosive devices (IEDs) has been the main mechanism of wounding and death. When a landmine or IED detonates under a vehicle (an under-body blast), the seat acceleration rapidly transmits a high load to the pelvis of the occupants, resulting in torso and pelvic injury. Pelvic fractures have high mortality rates, yet their injury mechanism has been poorly researched. Three (3) fresh-frozen male pelvic specimens were tested under axial impact loading. The pelvis was impacted mounted upside down by dropping a 12 kg mass at target impact velocities ranging from 1 to 8.6 m/s with time to peak velocity ranging from 3.8 to 5.8 ms. Resulting fractures were broadly categorized as involving a bilateral pubis rami fracture, a bilateral ischium fracture, and sacroiliac joint disruption. The study provides insights into the type and severity of pelvic injury that may occur over a range of under-body blast (UBB)-relevant loading profiles.


Subject(s)
Blast Injuries , Fractures, Bone , Male , Humans , Explosions , Pelvis , Sacroiliac Joint , Weight-Bearing
2.
J Mech Behav Biomed Mater ; 141: 105776, 2023 05.
Article in English | MEDLINE | ID: mdl-36989869

ABSTRACT

Injury due to the penetration of fragments into parts of the body has been the major cause of morbidity and mortality after an explosion. Penetrating injuries into the heart present very high mortality, yet the risk associated with such injuries has not been quantified. Quantifying this risk is key in the design of personal protection and the design of infrastructure. This study is the first quantitative assessment of cardiac penetrating injuries from energised fragments. Typical fragments (5-mm sphere, 0.78-g right-circular cylinder and 1.1-g chisel-nosed cylinder) were accelerated to a range of target striking velocities using a bespoke gas-gun system and impacted ventricular and atrial walls of lamb hearts. The severity of injury was shown to not depend on location (ventricular or atrial wall). The striking velocity with 50% probability of critical injury (Abbreviated Injury Scale (AIS) 5 score) ranged between 31 and 36 m/s across all 3 fragments used. These findings can help directly in reducing morbidity and mortality from explosive events as they can be implemented readily into models that aim to predict casualties in an explosive event, inform protocols for first responders, and improve design of infrastructure and personal protective equipment.


Subject(s)
Atrial Fibrillation , Blast Injuries , Wounds, Penetrating , Animals , Sheep
3.
J Biomech Eng ; 144(7)2022 07 01.
Article in English | MEDLINE | ID: mdl-34897379

ABSTRACT

Energized fragments from explosive devices have been the most common mechanism of injury to both military personnel and civilians in recent conflicts and terrorist attacks. Fragments that penetrate into the thoracic cavity are strongly associated with death due to the inherent vulnerability of the underlying structures. The aim of this study was to investigate the impact of fragment-simulating projectiles (FSPs) to tissues of the thorax in order to identify the thresholds of impact velocity for perforation through these tissues and the resultant residual velocity of the FSPs. A gas-gun system was used to launch 0.78-g cylindrical and 1.13-g spherical FSPs at intact porcine thoracic tissues from different impact locations. The sternum and rib bones were the most resistant to perforation, followed by the scapula and intercostal muscle. For both FSPs, residual velocity following perforation was linearly proportional to impact velocity. These findings can be used in the development of numerical tools for predicting the medical outcome of explosive events, which in turn can inform the design of public infrastructure, of personal protection, and of medical emergency response.


Subject(s)
Explosions , Animals , Metals , Swine , Wounds and Injuries
4.
Front Bioeng Biotechnol ; 9: 665656, 2021.
Article in English | MEDLINE | ID: mdl-34164383

ABSTRACT

Improvised explosive devices (IEDs) used in the battlefield cause damage to vehicles and their occupants. The injury burden to the casualties is significant. The biofidelity and practicality of current methods for assessing current protection to reduce the injury severity is limited. In this study, a finite-element (FE) model of the leg was developed and validated in relevant blast-loading conditions, and then used to quantify the level of protection offered by a combat boot. An FE model of the leg of a 35 years old male cadaver was developed. The cadaveric leg was tested physically in a seated posture using a traumatic injury simulator and the results used to calibrate the FE model. The calibrated model predicted hindfoot forces that were in good correlation (using the CORrelation and Analysis or CORA tool) with data from force sensors; the average correlation and analysis rating (according to ISO18571) was 0.842. The boundary conditions of the FE model were then changed to replicate pendulum tests conducted in previous studies which impacted the leg at velocities between 4 and 6.7 m/s. The FE model results of foot compression and peak force at the proximal tibia were within the experimental corridors reported in the studies. A combat boot was then incorporated into the validated computational model. Simulations were run across a range of blast-related loading conditions. The predicted proximal tibia forces and associated risk of injury indicated that the combat boot reduced the injury severity for low severity loading cases with higher times to peak velocity. The reduction in injury risk varied between 6 and 37% for calcaneal minor injuries, and 1 and 54% for calcaneal major injuries. No injury-risk reduction was found for high severity loading cases. The validated FE model of the leg developed here was able to quantify the protection offered by a combat boot to vehicle occupants across a range of blast-related loading conditions. It can now be used as a design and as an assessment tool to quantify the level of blast protection offered by other mitigation technologies.

5.
Front Bioeng Biotechnol ; 9: 665248, 2021.
Article in English | MEDLINE | ID: mdl-33937220

ABSTRACT

Traumatic amputation has been one of the most defining injuries associated with explosive devices. An understanding of the mechanism of injury is essential in order to reduce its incidence and devastating consequences to the individual and their support network. In this study, traumatic amputation is reproduced using high-velocity environmental debris in an animal cadaveric model. The study findings are combined with previous work to describe fully the mechanism of injury as follows. The shock wave impacts with the casualty, followed by energised projectiles (environmental debris or fragmentation) carried by the blast. These cause skin and soft tissue injury, followed by skeletal trauma which compounds to produce segmental and multifragmental fractures. A critical injury point is reached, whereby the underlying integrity of both skeletal and soft tissues of the limb has been compromised. The blast wind that follows these energised projectiles completes the amputation at the level of the disruption, and traumatic amputation occurs. These findings produce a shift in the understanding of traumatic amputation due to blast from a mechanism predominately thought mediated by primary and tertiary blast, to now include secondary blast mechanisms, and inform change for mitigative strategies.

6.
J Biomech Eng ; 143(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-32793978

ABSTRACT

Pelvic blast injury is one of the most severe patterns of injury to be sustained by casualties of explosions. We have previously identified the mechanism of injury in a shock tube-mediated murine model, linking outward flail of the lower limbs to unstable pelvic fractures and vascular injury. As current military pelvic protection does not protect against lower limb flail, in this study we have utilized the same murine model to investigate the potential of novel pelvic protection to reduce injury severity. Fifty cadaveric mice underwent shock-tube blast testing and subsequent injury analysis. Pelvic protection limiting lower limb flail resulted in a reduction of pelvic fracture incidence from both front-on (relative risk (RR) 0.5, 95% confidence intervals (CIs) 0.3-0.9, p < 0.01) and under-body (RR 0.3, 95% CI 0.1-0.8 p < 0.01) blast, with elimination of vascular injury in both groups (p < 0.001). In contrast, pelvic protection, which did not limit flail, had no effect on fracture incidence compared to the control group and was only associated with a minimal reduction in vascular injury (RR 0.6, 95% CI 0.4-1.0, p < 0.05). This study has utilized a novel strategy to provide proof of concept for the use of pelvic protection, which limits limb flail to mitigate the effects of pelvic blast injury.


Subject(s)
Blast Injuries , Adult , Animals , Humans , Mice , Pelvis
7.
Front Bioeng Biotechnol ; 8: 544214, 2020.
Article in English | MEDLINE | ID: mdl-33042964

ABSTRACT

Penetrating injuries are commonly inflicted in attacks with explosive devices. The extremities, and especially the leg, are the most commonly affected body areas, presenting high risk of infection, slow recovery, and threat of amputation. The aim of this study was to quantify the risk of fracture to the anteromedial, posterior, and lateral aspects of the tibia from a metal fragment-simulating projectile (FSP). A gas gun system and a 0.78-g cylindrical FSP were employed to perform tests on an ovine tibia model. The results from the animal study were subsequently scaled to obtain fracture-risk curves for the human tibia using the cortical thickness ratio. The thickness of the surrounding soft tissue was also taken into account when assessing fracture risk. The lateral cortex of the tibia was found to be most susceptible to fracture, whose impact velocity at 50% risk of EF1+, EF2+, EF3+, and EF4+ fracture types - according to the modified Winquist-Hansen classification - were 174, 190, 212, and 282 m/s, respectively. The findings of this study will be used to increase the fidelity of predictive models of projectile penetration.

8.
Article in English | MEDLINE | ID: mdl-32903553

ABSTRACT

Dismounted complex blast injury (DCBI) has been one of the most severe forms of trauma sustained in recent conflicts. This injury has been partially attributed to limb flail; however, the full causative mechanism has not yet been fully determined. Soil ejecta has been hypothesized as a significant contributor to the injury but remains untested. In this study, a small-animal model of gas-gun mediated high velocity sand blast was used to investigate this mechanism. The results demonstrated a correlation between increasing sand blast velocity and injury patterns of worsening severity across the trauma range. This study is the first to replicate high velocity sand blast and the first model to reproduce the pattern of injury seen in DCBI. These findings are consistent with clinical and battlefield data. They represent a significant change in the understanding of blast injury, producing a new mechanistic theory of traumatic amputation. This mechanism of traumatic amputation is shown to be high velocity sand blast causing the initial tissue disruption, with the following blast wind and resultant limb flail completing the amputation. These findings implicate high velocity sand blast, in addition to limb flail, as a critical mechanism of injury in the dismounted blast casualty.

9.
Article in English | MEDLINE | ID: mdl-32714916

ABSTRACT

Penetrating trauma by energized fragments is the most common injury from explosive devices, the main threat in the contemporary battlefield. Such devices produce projectiles dependent upon their design, including preformed fragments, casings, glass, or stones; these are subsequently energized to high velocities and cause serious injuries to the body. Current body armor focuses on the essential coverage, which is mainly the thoracic and abdominal area, and can be heavy and cumbersome. In addition, there may be coverage gaps that can benefit from the additional protection provided by one or more layers of lightweight ballistic fabrics. This study assessed the performance of single layers of commercially available ballistic protective fabrics such as Kevlar®, Twaron®, and Dyneema®, in both woven and knitted configurations. Experiments were carried out using a custom-built gas-gun system, with a 0.78-g cylindrical steel fragment simulating projectile (FSP) as the impactor, and ballistic gelatine as the backing material. FSP velocity at 50% risk of material perforation, gelatine penetration, and high-risk wounding to soft tissue, as well as the depth of penetration (DoP) against impact velocity and the normalized energy absorption were used as metrics to rank the performance of the materials tested. Additional tests were performed to investigate the effect of not including a soft-tissue simulant backing material on the performance of the fabrics. The results show that a thin layer of ballistic material may offer meaningful protection against the penetration of this FSP. Additionally, it is essential to ensure a biofidelic boundary condition as the protective efficacy of fabrics was markedly altered by a gelatine backing.

10.
J Trauma Acute Care Surg ; 88(6): 832-838, 2020 06.
Article in English | MEDLINE | ID: mdl-32176176

ABSTRACT

BACKGROUND: Pelvic trauma has emerged as one of the most severe injuries to be sustained by the victim of a blast insult. The incidence and mortality due to blast-related pelvic trauma is not known, and no data exist to assess the relative risk of clinical or radiological indicators of mortality. METHODS: The UK Joint Theater Trauma Registry was interrogated to identify those sustaining blast-mediated pelvic fractures during the conflicts in Iraq and Afghanistan, from 2003 to 2014, with subsequent computed tomography image analysis. Casualties that sustained more severe injuries remote to the pelvis were excluded. RESULTS: One hundred fifty-nine casualties with a 36% overall mortality rate were identified. Pelvic vascular injury, unstable pelvic fracture patterns, traumatic amputation, and perineal injury were higher in the dismounted fatality group (p < 0.05). All fatalities sustained a pelvic vascular injury. Pelvic vascular injury had the highest relative risk of death for any individual injury and an associated mortality of 56%. Dismounted casualties that sustained unstable pelvic fracture patterns, traumatic amputation, and perineal injury were at three times greater risk (relative risk, 3.00; 95% confidence interval, 1.27-7.09) to have sustained a pelvic vascular injury than those that did not sustain these associated injuries. Opening of the pubic symphysis and at least one sacroiliac joint was significantly associated with pelvic vascular injury (p < 0.001), and the lateral displacement of the sacroiliac joints was identified as a fair predictor of pelvic vascular injury (area under the receiver operating characteristic curve, 0.73). CONCLUSION: Dismounted blast casualties with pelvic fracture are at significant risk of a noncompressible pelvic vascular injury. Initial management of these patients should focus upon controlling noncompressible pelvic bleeding. Clinical and radiological predictors of vascular injury and mortality suggest that mitigation strategies aiming to attenuate lateral displacement of the pelvis following blast are likely to result in fewer fatalities and a reduced injury burden. LEVEL OF EVIDENCE: Prognostic, level III.


Subject(s)
Blast Injuries/epidemiology , Fractures, Bone/epidemiology , Hemostatic Techniques , Pelvic Bones/injuries , Vascular System Injuries/mortality , Adolescent , Adult , Afghan Campaign 2001- , Blast Injuries/complications , Blast Injuries/diagnosis , Blast Injuries/therapy , Fractures, Bone/complications , Fractures, Bone/diagnosis , Fractures, Bone/therapy , Humans , Injury Severity Score , Iraq War, 2003-2011 , Male , Middle Aged , Military Personnel/statistics & numerical data , Pelvic Bones/blood supply , Pelvic Bones/diagnostic imaging , Registries/statistics & numerical data , Retrospective Studies , Tomography, X-Ray Computed , Treatment Failure , United Kingdom/epidemiology , Vascular System Injuries/diagnosis , Vascular System Injuries/etiology , Vascular System Injuries/therapy , Young Adult
11.
Front Bioeng Biotechnol ; 8: 610907, 2020.
Article in English | MEDLINE | ID: mdl-33553116

ABSTRACT

The intervertebral disc (IVD) plays a main role in absorbing and transmitting loads within the spinal column. Degeneration alters the structural integrity of the IVDs and causes pain, especially in the lumbar region. The objective of this study was to investigate non-invasively the effect of degeneration on human 3D lumbar IVD strains (n = 8) and the mechanism of spinal failure (n = 10) under pure axial compression using digital volume correlation (DVC) and 9.4 Tesla magnetic resonance imaging (MRI). Degenerate IVDs had higher (p < 0.05) axial strains (58% higher), maximum 3D compressive strains (43% higher), and maximum 3D shear strains (41% higher), in comparison to the non-degenerate IVDs, particularly in the lateral and posterior annulus. In both degenerate and non-degenerate IVDs, peak tensile and shear strains were observed close to the endplates. Inward bulging of the inner annulus was observed in all degenerate IVDs causing an increase in the AF compressive, tensile, and shear strains at the site of inward bulge, which may predispose it to circumferential tears (delamination). The endplate is the spine's "weak link" in pure axial compression, and the mechanism of human vertebral fracture is associated with disc degeneration. In non-degenerate IVDs the locations of failure were close to the endplate centroid, whereas in degenerate IVDs they were in peripheral regions. These findings advance the state of knowledge on mechanical changes during degeneration of the IVD, which help reduce the risk of injury, optimize treatments, and improve spinal implant designs. Additionally, these new data can be used to validate computational models.

12.
J Mech Behav Biomed Mater ; 102: 103525, 2020 02.
Article in English | MEDLINE | ID: mdl-31877527

ABSTRACT

Penetrating injuries due to fragments energised by an explosive event are life threatening and are associated with poor clinical and functional outcomes. The tibia is the long bone most affected in survivors of explosive events, yet the risk of penetrating injury to it has not been quantified. In this study, an injury-risk assessment of penetrating injury to the tibia was conducted using a gas-gun system with a 0.78-g cylindrical fragment simulating projectile. An ovine tibia model was used to generate the injury-risk curves and human cadaveric tests were conducted to validate and scale the results of the ovine model. The impact velocity at 50% risk (±95% confidence intervals) for EF1+, EF2+, EF3+, and EF4+ fractures to the human tibia - using the modified Winquist-Hansen classification - was 271 ± 30, 363 ± 46, 459 ± 102, and 936 ± 182 m/s, respectively. The scaling factor for the impact velocity from cadaveric ovine to human was 2.5. These findings define the protection thresholds to improve the injury outcomes for fragment penetrating injury to the tibia.


Subject(s)
Fractures, Bone , Tibial Fractures , Animals , Bone and Bones , Humans , Sheep , Tibia
13.
Sci Adv ; 5(10): eaay0244, 2019 10.
Article in English | MEDLINE | ID: mdl-31633031

ABSTRACT

Plantar skin on the soles of the feet has a distinct morphology and composition that is thought to enhance its tolerance to mechanical loads, although the individual contributions of morphology and composition have never been quantified. Here, we combine multiscale mechanical testing and computational models of load bearing to quantify the mechanical environment of both plantar and nonplantar skin under load. We find that morphology and composition play distinct and complementary roles in plantar skin's load tolerance. More specifically, the thick stratum corneum provides protection from stress-based injuries such as skin tears and blisters, while epidermal and dermal compositions provide protection from deformation-based injuries such as pressure ulcers. This work provides insights into the roles of skin morphology and composition more generally and will inform the design of engineered skin substitutes as well as the etiology of skin injury.


Subject(s)
Skin/pathology , Stress, Mechanical , Collagen Type I/chemistry , Collagen Type I/metabolism , Epidermis/pathology , Humans , Microscopy, Atomic Force , Skin/injuries , Skin/metabolism
14.
Spine J ; 19(12): 2013-2024, 2019 12.
Article in English | MEDLINE | ID: mdl-31326631

ABSTRACT

BACKGROUND CONTEXT: The use of finite element (FE) methods to study the biomechanics of the intervertebral disc (IVD) has increased over recent decades due to their ability to quantify internal stresses and strains throughout the tissue. Their accuracy is dependent upon realistic, strain-rate dependent material properties, which are challenging to acquire. PURPOSE: The aim of this study was to use the inverse FE technique to characterize the material properties of human lumbar IVDs across strain rates. STUDY DESIGN: A human cadaveric experimental study coupled with an inverse finite element study. METHODS: To predict the structural response of the IVD accurately, the material response of the constituent structures was required. Therefore, compressive experiments were conducted on 16 lumbar IVDs (39±19 years) to obtain the structural response. An FE model of each of these experiments was developed and then run through an inverse FE algorithm to obtain subject-specific constituent material properties, such that the structural response was accurate. RESULTS: Experimentally, a log-linear relationship between IVD stiffness and strain rate was observed. The material properties obtained through the subject-specific inverse FE optimization of the annulus fibrosus (AF) fiber and AF fiber ground matrix allowed a good match between the experimental and FE response. This resulted in a Young modulus of AF fibers (-MPa) to strain rate (ε˙, /s) relationship of YMAF=31.5ln(ε˙)+435.5, and the C10 parameter of the Neo-Hookean material model of the AF ground matrix was found to be strain-rate independent with an average value of 0.68 MPa. CONCLUSIONS: These material properties can be used to improve the accuracy, and therefore predictive ability of FE models of the spine that are used in a wide range of research areas and clinical applications. CLINICAL SIGNIFICANCE: Finite element models can be used for many applications including investigating low back pain, spinal deformities, injury biomechanics, implant design, design of protective systems, and degenerative disc disease. The accurate material properties obtained in this study will improve the predictive ability, and therefore clinical significance of these models.


Subject(s)
Annulus Fibrosus/physiology , Elastic Modulus , Lumbar Vertebrae/physiology , Biomechanical Phenomena , Finite Element Analysis , Humans , Stress, Mechanical
15.
J Mech Behav Biomed Mater ; 97: 306-311, 2019 09.
Article in English | MEDLINE | ID: mdl-31151003

ABSTRACT

Injuries to the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of the hand are particularly disabling. However, current standards for hand protection from blunt impact are not based on quantitative measures of the likelihood of damage to the tissues. The aim of this study was to evaluate the probability of injury of the MCP and PIP joints of the human hand due to blunt impact. Impact testing was conducted on 21 fresh-frozen cadaveric hands. Unconstrained motion at every joint was allowed. All hands were imaged with computed tomography and dissected post-impact to quantify injury. An injury-risk curve was developed for each joint using a Weibull distribution with dorsal impact force as the predictive variable. The injury risks for PIP joints were similar, as were those for MCP joints. The risk of injury of the MCP joints from a given applied force was significantly greater than that of the PIP joints (p = 0.0006). The axial forces with a 50% injury risk for the MCP and PIP joints were 3.0 and 4.2 kN, respectively. This is the first study to have investigated the injury tolerance of the MCP and PIP joints. The proposed injury curves can be used for assessing the likelihood of tissue damage, for designing targeted protective solutions such as gloves, and for developing more biofidelic standards for assessing these solutions.


Subject(s)
Metacarpophalangeal Joint/injuries , Metacarpophalangeal Joint/physiopathology , Range of Motion, Articular , Wounds, Nonpenetrating/physiopathology , Adult , Aged , Biomechanical Phenomena , Cadaver , Hand/physiology , Humans , Middle Aged , Risk , Tomography, X-Ray Computed
16.
Ann Biomed Eng ; 47(11): 2232-2240, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31147806

ABSTRACT

Pelvic vascular injury in the casualty of an explosive insult is a principal risk factor for increased mortality. The mechanism of injury has not previously been investigated in a physical model. In this study, a small-animal model of pelvic blast injury with a shock-tube mediated blast wave was utilised and showed that lower limb flail is necessary for an unstable pelvic fracture with vascular injury to occur. One hundred and seventy-three cadaveric mice underwent shock-tube blast testing and subsequent injury analysis. Increasingly displaced pelvic fractures and an increase in the incidence of pelvic vascular injury were seen with increasing lower limb flail; the 50% risk of vascular injury was 66° of lower limb flail out from the midline (95% confidence intervals 59°-75°). Pre-blast surgical amputation at the hip or knee showed the thigh was essential to result in pelvic displacement whilst the leg was not. These findings, corroborated by clinical data, bring a paradigm shift in our understanding of the mechanism of blast injury. Restriction of lower limb flail in the human, through personal protective equipment, has the potential to mitigate the effects of pelvic blast injury.


Subject(s)
Blast Injuries/prevention & control , Fractures, Bone/prevention & control , Lower Extremity/physiopathology , Pelvis/injuries , Animals , Cadaver , Male , Mice
17.
Spine (Phila Pa 1976) ; 44(15): 1035-1041, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31095121

ABSTRACT

STUDY DESIGN: Bovine motion segments were used to investigate the high-rate compression response of intervertebral discs (IVD) before and after depressurising the nucleus pulposus (NP) by drilling a hole through the cranial endplate into it. OBJECTIVE: To investigate the effect of depressurising the NP on the force-displacement response, and the energy absorption in IVDs when compressed at high strain rates. SUMMARY OF BACKGROUND DATA: The mechanical function of the gelatinous NP located in the center of the IVDs of the spine is unclear. Removal of the NP has been shown to affect the direction of bulge of the inner anulus fibrosus (AF), but at low loading rates removal of the NP pressure does not affect the IVD's stiffness. During sports or injurious events, IVDs are commonly exposed to high loading rates, however, no studies have investigated the mechanical function of the NP at these rates. METHODS: Eight bovine motion segments were used to quantify the change in pressure caused by a hole drilled through the cranial endplate into the NP, and eight segments were used to investigate the high-rate response before and after a hole was drilled into the NP. RESULTS: The hole caused a 28.5% drop in the NP pressure. No statistically significant difference was seen in peak force, peak displacement, or energy-absorption of the intact, and depressurized NP groups under impact loading. The IVDs absorbed 72% of the input energy, and there was no rate dependency in the percentage energy absorbed. CONCLUSION: These results demonstrate that the NP pressure does not affect the transfer of load through, or energy absorbed by, the IVD at high loading rates and the AF, rather than the NP, may play the most important role in transferring load, and absorbing energy at these rates. This should be considered when attempting surgically to restore IVD function. LEVEL OF EVIDENCE: N/A.


Subject(s)
Intervertebral Disc/physiology , Nucleus Pulposus/physiology , Animals , Annulus Fibrosus/physiology , Cattle , Intervertebral Disc Degeneration
18.
PLoS One ; 15(1): e0227064, 2019.
Article in English | MEDLINE | ID: mdl-31899778

ABSTRACT

When immobile or neuropathic patients are supported by beds or chairs, their soft tissues undergo deformations that can cause pressure ulcers. Current support surfaces that redistribute under-body pressures at vulnerable body sites have not succeeded in reducing pressure ulcer prevalence. Here we show that adding a supporting lateral pressure can counter-act the deformations induced by under-body pressure, and that this 'pressure equalisation' approach is a more effective way to reduce ulcer-inducing deformations than current approaches based on redistributing under-body pressure. A finite element model of the seated pelvis predicts that applying a lateral pressure to the soft tissue reduces peak von Mises stress in the deep tissue by a factor of 2.4 relative to a standard cushion (from 113 kPa to 47 kPa)-a greater effect than that achieved by using a more conformable cushion, which reduced von Mises stress to 75 kPa. Combining both a conformable cushion and lateral pressure reduced peak von Mises stresses to 25 kPa. The ratio of peak lateral pressure to peak under-body pressure was shown to regulate deep tissue stress better than under-body pressure alone. By optimising the magnitude and position of lateral pressure, tissue deformations can be reduced to that induced when suspended in a fluid. Our results explain the lack of efficacy in current support surfaces and suggest a new approach to designing and evaluating support surfaces: ensuring sufficient lateral pressure is applied to counter-act under-body pressure.


Subject(s)
Equipment Design , Pressure Ulcer/prevention & control , Therapy, Soft Tissue/methods , Biomechanical Phenomena , Buttocks , Humans , Pelvis , Pressure
19.
Ann Biomed Eng ; 47(1): 306-316, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30276492

ABSTRACT

Over 80% of wounded Service Members sustain at least one extremity injury. The 'deck-slap' foot, a product of the vehicle's floor rising rapidly when attacked by a mine to injure the limb, has been a signature injury in recent conflicts. Given the frequency and severity of these combat-related extremity injuries, they require the greatest utilisation of resources for treatment, and have caused the greatest number of disabled soldiers during recent conflicts. Most research efforts focus on occupants seated with both tibia-to-femur and tibia-to-foot angles set at 90°; it is unknown whether results obtained from these tests are applicable when alternative seated postures are adopted. To investigate this, lower limbs from anthropometric testing devices (ATDs) and post mortem human subjects (PMHSs) were loaded in three different seated postures using an under-body blast injury simulator. Using metrics that are commonly used for assessing injury, such as the axial force and the revised tibia index, the lower limb of ATDs were found to be insensitive to posture variations while the injuries sustained by the PMHS lower limbs differed in type and severity between postures. This suggests that the mechanism of injury depends on the posture and that this cannot be captured by the current injury criteria. Therefore, great care should be taken when interpreting and extrapolating results, especially in vehicle qualification tests, when postures other than the 90°-90° are of interest.


Subject(s)
Blast Injuries , Femur , Foot , Models, Biological , Postural Balance , Tibia , Blast Injuries/pathology , Blast Injuries/physiopathology , Female , Femur/pathology , Femur/physiopathology , Foot/pathology , Foot/physiopathology , Humans , Male , Tibia/pathology , Tibia/physiopathology
20.
Knee Surg Sports Traumatol Arthrosc ; 27(1): 206-214, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30097687

ABSTRACT

PURPOSE: To analyse the stress distribution through longitudinal and radial meniscal tears in three tear locations in weight-bearing conditions and use it to ascertain the impact of tear location and type on the potential for healing of meniscal tears. METHODS: Subject-specific finite-element models of a healthy knee under static loading at 0°, 20°, and 30° knee flexion were developed from unloaded magnetic resonance images and weight-bearing, contrast-enhanced computed tomography images. Simulations were then run after introducing tears into the anterior, posterior, and midsections of the menisci. RESULTS: Absolute differences between the displacements of anterior and posterior segments modelled in the intact state and those quantified from in vivo weight-bearing images were less than 0.5 mm. There were tear-location-dependent differences between hoop stress distributions along the inner and outer surfaces of longitudinal tears; the longitudinal tear surfaces were compressed together to the greatest degree in the lateral meniscus and were most consistently in compression on the midsections of both menisci. Radial tears resulted in an increase in stress at the tear apex and in a consistent small compression of the tear surfaces throughout the flexion range when in the posterior segment of the lateral meniscus. CONCLUSIONS: Both the type of meniscal tear and its location within the meniscus influenced the stresses on the tear surfaces under weight bearing. Results agree with clinical observations and suggest reasons for the inverse correlation between longitudinal tear length and healing, the inferior healing ability of medial compared with lateral menisci, and the superior healing ability of radial tears in the posterior segment of the lateral meniscus compared with other radial tears. This study has shown that meniscal tear location in addition to type likely plays a crucial role in dictating the success of non-operative treatment of the menisci. This may be used in decision making regarding conservative or surgical management.


Subject(s)
Finite Element Analysis , Knee Joint/physiology , Menisci, Tibial/physiopathology , Models, Biological , Tibial Meniscus Injuries/physiopathology , Adult , Arthroscopy , Humans , Knee , Knee Injuries , Magnetic Resonance Imaging , Male , Pressure , Range of Motion, Articular , Tomography, X-Ray Computed , Weight-Bearing , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...