Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37299363

ABSTRACT

The characterization of the mechanical behavior of elastocaloric materials is essential to identify their viability in heating/cooling devices. Natural rubber (NR) is a promising elastocaloric (eC) polymer as it requires low external stress to induce a wide temperature span, ΔT. Nonetheless, solutions are needed to further improve DT, especially when targeting cooling applications. To this aim, we designed NR-based materials and optimized the specimen thickness, the density of their chemical crosslinks, and the quantity of ground tire rubber (GTR) used as reinforcing fillers. The eC properties under a single and cyclic loading conditions of the resulting vulcanized rubber composites were investigated via the measure of the heat exchange at the specimen surface using infrared thermography. The highest eC performance was found with the specimen geometry with the lowest thickness (0.6 mm) and a GTR content of 30 wt.%. The maximum temperature span under single interrupted cycle and multiple continuous cycles were equal to 12 °C and 4 °C, respectively. These results were assumed to be related to more homogeneous curing in these materials and to a higher crosslink density and GTR content which both act as nucleating elements for the strain-induced crystallization at the origin of the eC effect. This investigation would be of interest for the design of eC rubber-based composites in eco-friendly heating/cooling devices.

2.
Soft Matter ; 18(45): 8663-8674, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36349700

ABSTRACT

Vulcanized natural rubber (NR)/cellulose nanocrystals (CNC) composites with a CNC content of up to 5 wt% using physical blending and dicumyl peroxide crosslinking were prepared. The tensile properties were investigated at slow and high strain rates. The slow strain rate tests revealed an increase of the elastic modulus concomitant with a decrease of strain at the crystallization onset while increasing the CNC fraction. The high strain rate tests performed near adiabatic conditions demonstrated the ability of the CNC to improve the elastocaloric properties of the NR matrix, with an increase of 30% and 15% of heating and cooling capacities, respectively, in the presence of 3 wt% CNC. Such results were ascribed to (i) a higher thermoelastic effect, due to strain amplification in the NR matrix in the presence of CNC and (ii) a nucleating effect of the CNC on strain induced crystallization. This series of materials can be proposed as a promising eco-friendly alternative to conventional carbon black filled rubber as potential green elastocaloric materials (heating pump, cooling machines).

3.
Polymers (Basel) ; 14(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365630

ABSTRACT

The use of recycled opaque PET (r-O-PET, with TiO2) as a reinforcement for the recycled polypropylene matrix (r-PP) was evaluated through the life cycle assessment according to different scenarios corresponding to two different recycled blends and considered two virgin raw plastic material as reference materials when comparing the environmental performance of the proposed treatments. The results indicate that the environmental performance was quite different for each blend, since the additional extrusion process required in scenario 2 (blend with TiO2) causes all impact categories analysed to report higher values when compared with scenario 1 (blend without TiO2). The stage that contributes the most corresponds to the different extrusion processes included in both recycling blends, representing at least 80% of the total for global warming. Compared with virgin raw materials, the blend with TiO2 showed better performance in all the impact categories analysed in comparison with virgin PA66, while the blend without TiO2 showed the opposite trend when compared to PP. Furthermore, the fact that the upcycling treatment was carried out on a pilot scale provides room for improvement when implemented on a full scale. It is worth noting the high energy consumption of the treatment processes and their associated cost, in addition to the market cost of virgin raw materials, however, when considering the environmental cost of raw materials, it is observed that when substituting virgin materials PP and PA66 for the blends evaluated in this study results in a reduction of the environmental price of up to 2.5 times.

4.
Polymers (Basel) ; 15(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36616455

ABSTRACT

Poly(lactic acid) (PLA) and biosourced polyamide (PA) bioblends, with a variable PA weight content of 10-50%, were manufactured by melt blending in order to improve the behavior of PLA against thermal degradation. The effect of reactive extrusion on the thermal performance of PLA within bioblends was analyzed. The reactive extrusion was made by means of the addition of a styrene-acrylic multi-functional-epoxide oligomeric reactive agent (SAmfE), with the commercial name of Joncryl. Four parameters were considered in order to study the thermal behavior of bioblends against thermal decomposition: the onset decomposition temperature, the shape and temperature interval of the thermal decomposition patterns, the activation energy of the thermal decomposition, and the evidence leading to the most probable mechanism. The latter was determined by means of three evidence: standardized conversion functions, y(α) master plots, and integral mean error. It was shown that reactive extrusion of PLA as well as PA incorporation to the polymer matrix of PLA were responsible for an increase in the onset decomposition temperature of 10.4 °C. The general analytical equation (GAE) was used to evaluate the kinetic parameters of the thermal degradation of PLA within bioblends for various reaction mechanisms. It was shown that the random scission of macromolecular chains is the best mechanism for both untreated and treated PLA by means of reactive extrusion. It was shown that reactive extrusion together with higher content of PA resulted in an increased protective effect against the thermal degradation of PLA as demonstrated by an increase in activation energy of 60 kJ/mol. It was found that there is a relationship between the increase in activation energy and the increase in the onset decomposition temperature when using reactive extrusion. The improvement of the thermal stability of bioblends by means of reactive extrusion was explained by an increase in the complex viscosity from 980 to 2000 Pa·s at 0.06 rad/s and from 250 to 300 Pa·s at 630 rad/s for bioblend containing 30% of PLAREX and by a finer dispersion of PA within the PLAREX matrix. Results from DSC were not conclusive regarding the compatibility between both phases.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34947658

ABSTRACT

The orientation of polymer composites is one way to increase the mechanical properties of the material in a desired direction. In this study, the aim was to orient chitin nanocrystal (ChNC)-reinforced poly(lactic acid) (PLA) nanocomposites by combining two techniques: calendering and solid-state drawing. The effect of orientation on thermal properties, crystallinity, degree of orientation, mechanical properties and microstructure was studied. The orientation affected the thermal and structural behavior of the nanocomposites. The degree of crystallinity increased from 8% for the isotropic compression-molded films to 53% for the nanocomposites drawn with the highest draw ratio. The wide-angle X-ray scattering results confirmed an orientation factor of 0.9 for the solid-state drawn nanocomposites. The mechanical properties of the oriented nanocomposite films were significantly improved by the orientation, and the pre-orientation achieved by film calendering showed very positive effects on solid-state drawn nanocomposites: The highest mechanical properties were achieved for pre-oriented nanocomposites. The stiffness increased from 2.3 to 4 GPa, the strength from 37 to 170 MPa, the elongation at break from 3 to 75%, and the work of fracture from 1 to 96 MJ/m3. This study demonstrates that the pre-orientation has positive effect on the orientation of the nanocomposites structure and that it is an extremely efficient means to produce films with high strength and toughness.

6.
Polymers (Basel) ; 13(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34833295

ABSTRACT

Poly(lactic acid) (PLA) and biosourced polyamide (PA) bioblends, with a variable PA weight content of 10-50%, were prepared by melt blending in order to overcome the high brittleness of PLA. During processing, the properties of the melt were stabilized and enhanced by the addition of a styrene-acrylic multi-functional-epoxide oligomeric reactive agent (SAmfE). The general analytical equation (GAE) was used to evaluate the kinetic parameters of the thermal degradation of PLA within bioblends. Various empirical and theoretical solid-state mechanisms were tested to find the best kinetic model. In order to study the effect of PA on the PLA matrix, only the first stage of the thermal degradation was taken into consideration in the kinetic analysis (α < 0.4). On the other hand, standardized conversion functions were evaluated. Given that it is not easy to visualize the best accordance between experimental and theoretical values of standardized conversion functions, an index, based on the integral mean error, was evaluated to quantitatively support our findings relative to the best reaction mechanism. It was demonstrated that the most probable mechanism for the thermal degradation of PLA is the random scission of macromolecular chains. Moreover, y(α) master plots, which are independent of activation energy values, were used to confirm that the selected reaction mechanism was the most adequate. Activation energy values were calculated as a function of PA content. Moreover, the onset thermal stability of PLA was also determined.

7.
Polymers (Basel) ; 13(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34685290

ABSTRACT

The recyclability of opaque PET, which contains TiO2 nanoparticles, has not been as well-studied as that of transparent PET. The objective of this work is to recycle post-consumer opaque PET through reactive extrusion with Joncryl. The effect of the reactive extrusion process on the molecular structure and on the thermal/mechanical/rheological properties of recycling post-consumer opaque PET (r-PET) has been analyzed. A 1% w/w Joncryl addition caused a moderate increase in the molecular weight. A moderate increase in chain length could not explain a decrease in the overall crystallization rate. This result is probably due to the presence of branches interrupting the crystallizable sequences in reactive extruded r-PET (REX-r-PET). A rheological investigation performed by SAOS/LAOS/elongational studies detected important structural modifications in REX-r-PET with respect to linear r-PET or a reference virgin PET. REX-r-PET is characterized by a slow relaxation process with enlarged elastic behaviors that are characteristic of a long-chain branched material. The mechanical properties of REX-r-PET increased because of the addition of the chain extender without a significant loss of elongation at the break. The reactive extrusion process is a suitable way to recycle opaque PET into a material with enhanced rheological properties (thanks to the production of a chain extension and long-chain branches) with mechanical properties that are comparable to those of a typical virgin PET sample.

8.
Polymers (Basel) ; 13(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34301118

ABSTRACT

This work presents the experimental results of the mechanical and fracture behaviour of three polymeric blends prepared from two recycled plastics, namely polypropylene and opaque poly (ethylene terephthalate), where the second one acted as a reinforcement phase. The raw materials were two commercial degrees of recycled post-consumer waste, i.e., rPP and rPET-O. Sheets were manufactured by a semi-industrial extrusion-calendering process. The mechanical and fracture behaviours of manufactured sheets were analyzed via tensile tests and the essential work of fracture approach. SEM micrographics of cryofractured sheets revelated the development of in situ rPP/rPET-O microfibrillar composites when 30 wt.% of rPET-O was added. It was observed that the yield stress was not affected with the addition of rPET-O. However, the microfibrillar structure increased the Young's modulus by more than a third compared with rPP, fulfilling the longitudinal value predicted by the additive rule of mixtures. Regarding the EWF analysis, the resistance to crack initiation was highly influenced by the resistance to its propagation owing to morphology-related instabilities during tearing. To analyze the initiation stage, a partition energy method was successfully applied by splitting the total work of fracture into two specific energetic contributions, namely initiation and propagation. The results revelated that the specific essential initiation-related work of fracture was mainly affected by rPET-O phase. Remarkably, its value was significantly improved by a factor of three with the microfibrillar structure of rPET-O phase. The results allowed the exploration of the potential ability of manufacturing in situ MFCs without a "precursor" morphology, providing an economical way to promote the recycling rate of PET-O, as this material is being discarded from current recycling processes.

9.
Polymers (Basel) ; 13(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066622

ABSTRACT

Poly (Lactic Acid) (PLA)/Ground Tire Rubber (GTR) blends using Dicumyl peroxide (DCP) as a crosslinking agent were prepared with the following aims: propose a new route to recycle wastes rubber from the automotive industry and improve the toughness and impact strength of the inherently brittle bio-based PLA. The GTR were subjected to two types of grinding process (cryo- and dry ambient grinding). Swelling measurements revealed the grinding to be associated with a mechanical damage of the rubber chains, independently on the type of grinding or on the GTR size (from <400 µm to <63 µm). Moreover, the finest GTR contains the largest amount of reinforcing elements (carbon black, clay) that can be advantageously used in PLA/GTR blends. Indeed, the use of the finest cryo-grinded GTR in the presence of DCP showed the least decrease of the tensile strength (-30%); maintenance of the tensile modulus and the largest improvement of the strain at break (+80%), energy at break (+60%) and impact strength (+90%) as compared to the neat PLA. The results were attributed to the good dispersion of both fine GTR and clay particles into the PLA matrix. Moreover, a possible re-crosslinking of the GTR particles and/or co-crosslinking at PLA/GTR interface in presence of DCP is expected to contribute to such improved ductility and impact strength.

10.
Polymers (Basel) ; 13(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33478158

ABSTRACT

This work provides an experimental analysis regarding the fracture behavior of recycled opaque PET (rPET-O) containing titanium dioxide (TiO2) under plane stress conditions. For this purpose, a commercially post-consumer transparent colored/opaque PET flakes mix was processed using a semi-industrial extrusion calendering process. The manufactured rPET-O sheets had a TiO2 content of 1.45 wt.%. The mechanical and fracture properties of unaged and physically aged (1 year) samples were determined through uniaxial tensile experiments and the Essential Work of Fracture (EWF) methodology, respectively, and were compared to those of recycled transparent PET (rPET-T). Under tensile loading, independently of the aging time, rPET-O samples exhibited similar mechanical behavior as rPET-T up to the yield point. The main differences remained in the post-yielding region. The presence of TiO2 particles allowed reducing the strain energy density up to neck formation in aged samples. Regarding the EWF analysis, it is argued that the energy consumed up to the onset of crack propagation (we) for rPET-T was mainly dependent of the molecular mobility. That is, the we value decreased by 26% when rPET-T was physically aged. Interestingly, we values remained independent of the aging time for rPET-O. In fact, it was highlighted that before crack propagation, the EWF response was principally governed by matrix cavitation ahead of the crack tip, which allowed a significant release of the triaxial stress state independently of the molecular mobility. This property enabled rPET-O to exhibit a resistance to crack initiation 17% higher as compared to rPET-T when the material was physically aged. Finally, independently of the aging time, rPET-O exhibited a resistance to crack growth approximately 21% larger than rPET-T due to matrix fibrillation in large scale deformation.

11.
Polymers (Basel) ; 12(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348679

ABSTRACT

The effect of the strain rate on damage in carbon black filled Ethylene Propylene Diene Monomer rubber (EPDM)stretched during single and multiple uniaxial loading is investigated. This has been performed by analyzing the stress-strain response, the evolution of damage by Digital Image Correlation (DIC), the associated dissipative heat source by InfraRed thermography (IR), and the chains network damage by swelling. The strain rates were selected to cover the transition from quasi-static to medium strain rate conditions. In single loading conditions, the increase of the strain rate yields in a preferential damage of the filler network while the rubber network is preserved. Such damage is accompanied by a stress softening and an adiabatic heat source rise. Conversely, increasing the strain rate in cyclic loading conditions yields in a filler network accommodation and a high self-heating whose combined effect is proposed as a possible cause of the ability of filled EPDM to limit damage by reducing cavities opening during loading, and favoring cavities closing upon unloading.

12.
Polymers (Basel) ; 12(3)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32214000

ABSTRACT

The crystalline phase of poly(lactic acid) (PLA) has crucial effects on its own properties and nanocomposites. In this study, the isothermal crystallization of PLA, triethyl citrate-plasticized PLA (PLA-TEC), and its nanocomposite with chitin nanocrystals (PLA-TEC-ChNC) at different temperatures and times was investigated, and the resulting properties of the materials were characterized. Both PLA and PLA-TEC showed extremely low crystallinity at isothermal temperatures of 135, 130, 125 °C and times of 5 or 15 min. In contrast, the addition of 1 wt % of ChNCs significantly improved the crystallinity of PLA under the same conditions owing to the nucleation effect of the ChNCs. The samples were also crystallized at 110 °C to reach their maximal crystallinity, and PLA-TEC-ChNC achieved 48% crystallinity within 5 min, while PLA and PLA-TEC required 40 min to reach a similar level. Moreover, X-ray diffraction analysis showed that the addition of ChNCs resulted in smaller crystallite sizes, which further influenced the barrier properties and hydrolytic degradation of the PLA. The nanocomposites had considerably lower barrier properties and underwent faster degradation compared to PLA-TEC110. These results confirm that the addition of ChNCs in PLA leads to promising properties for packaging applications.

13.
Polymers (Basel) ; 12(1)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31861652

ABSTRACT

The effect of processing conditions on the final morphology of Poly(Lactic Acid) (PLA) with bio-based Polyamide 10.10 (PA) 70/30 blends is analyzed in this paper. Two types of PLA were used: Commercial (neat PLA) and a rheologically modified PLA (PLAREx), with higher melt elasticity produced by reactive extrusion. To evaluate the ability of in situ micro-fibrillation (f) of PA phase during blend compounding by twin-screw extrusion, two processing parameters were varied: i) Screw speed rotation (rpm); and ii) take-up velocity, to induce a hot stretching with different Draw Ratios (DR). The potential ability of PA-f in both bio-blends was evaluated by the viscosity (p) and elasticity (k') ratios determined from the rheological tests of pristine polymers. When PLAREx was used, the requirements for PA-f was fulfilled in the shear rate range observed at the extrusion die. Scanning electron microscopy (SEM) observations revealed that, unlike neat PLA, PLAREx promoted PA-f without hot stretching and the aspect ratio increased as DR increased. For neat PLA-based blends, PA-f was promoted during the hot stretching stage. DMTA analysis revealed that the use of PLAREx PLAREx resulted in a better mechanical performance in the rubbery region (T > Tg PLA-phase) due to the PA-f morphology obtained.

14.
Polymers (Basel) ; 11(10)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623120

ABSTRACT

Titanium dioxide (TiO2) nanoparticles have recently appeared in PET waste because of the introduction of opaque PET bottles. We prepare polymer blend nanocomposites (PBNANOs) by adding hydrophilic (hphi), hydrophobic (hpho), and hydrophobically modified (hphoM) titanium dioxide (TiO2) nanoparticles to 80rPP/20rPET recycled blends. Contact angle measurements show that the degree of hydrophilicity of TiO2 decreases in the order hphi > hpho > hphoM. A reduction of rPET droplet size occurs with the addition of TiO2 nanoparticles. The hydrophilic/hydrophobic balance controls the nanoparticles location. Transmission electron microscopy (TEM_ shows that hphi TiO2 preferentially locates inside the PET droplets and hpho at both the interface and PP matrix. HphoM also locates within the PP matrix and at the interface, but large loadings (12%) can completely cover the surfaces of the droplets forming a physical barrier that avoids coalescence, leading to the formation of smaller droplets. A good correlation is found between the crystallization rate of PET (determined by DSC) and nanoparticles location, where hphi TiO2 induces the highest PET crystallization rate. PET lamellar morphology (revealed by TEM) is also dependent on particle location. The mechanical behavior improves in the elastic regime with TiO2 addition, but the plastic deformation of the material is limited and strongly depends on the type of TiO2 employed.

15.
Carbohydr Polym ; 224: 115188, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31472860

ABSTRACT

Considering the appealing need for an industrially viable approach, this works aims at demonstrating the rapid and easy melt processing of Polylactide (PLA) bio-composites reinforced with cellulose nanofibrils (CNF). For this purpose and against to their high propensity to self-aggregate on processing, an aqueous CNF-based suspension in the presence of polyethylene glycol (PEG) followed by a gentle drying way were performed to provide melt-processable CNF-based masterbatches. Morphological observations coupled with rheological analyses confirmed how the strategy of the PEG-based masterbatch approach facilitated the formation of a well-dispersed and strongly interacting CNF network within the polymeric matrix. At temperatures above Tg, thermo-mechanical characterization showed that the load-bearing capacity of the web-like CNF network was even more apparent and counteracted the PEG plasticizing effect. Thermogravimetric analysis evidenced that in the case of selective positioning at the PLA-PEG interface, CNF mitigated the negative impact of PEG addition on the PLA thermal stability. These results revealed the successfulness of our sustainable organic solvent-free approach to prepare melt-processable CNF masterbatches, which can be readily converted into conventional industrially scalable melt-processing techniques.


Subject(s)
Cellulose/chemistry , Drug Carriers/chemistry , Nanocomposites/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Mechanical Phenomena , Phase Transition , Rheology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...