Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 818015, 2022.
Article in English | MEDLINE | ID: mdl-35911713

ABSTRACT

Natural killer (NK) cells are important effectors of the innate immune system and participate in the first line of defense against infections and tumors. Prior to being functional, these lymphocytes must be educated or licensed through interactions of their major histocompatibility complex class I molecules with self-specific inhibitory receptors that recognize them. In the absence of such contacts, caused by either the lack of expression of the inhibitory receptors or a very low level of major histocompatibility complex class I (MHC class I) proteins, NK cells are hypo-reactive at baseline (ex vivo). After stimulation (assessed through plate-bound antibodies against activating receptors or culture in the presence of cytokines such as interleukin (IL)-2 or IL-15) however, they can become cytotoxic and produce cytokines. This is particularly the case in transporter associated with antigen processing (TAP)-deficient mice, which we investigated in the present study. Transporter associated with antigen processing transports endogenous peptides from the cytosol to the endoplasmic reticulum, where they are loaded on nascent MHC class I molecules, which then become stable and expressed at the cell surface. Consequently, TAP-KO mice have very low levels of MHC class I expression. We present a study about phenotypic and functional aspects of NK cells in two mouse strains, C57BL/6 wildtype and TAP1-KO in spleen and lung. We observed that in both types of mice, on the same genetic background, the initial pattern of education, conferred to the cells via the inhibitory receptors Ly49C/I and NKG2A, was maintained even after a strong stimulation by the cytokines interleukin-2, interleukin-12, interleukin-15 and interleukin-18. Furthermore, the percentages of activated NK cells expressing Ly49C/I and Ly49I were strongly down-modulated under these conditions. We completed our investigations with phenotypic studies of NK cells from these mice.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I , Killer Cells, Natural , ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics , Animals , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily A/immunology , NK Cell Lectin-Like Receptor Subfamily A/metabolism
2.
J Int AIDS Soc ; 22(9): e25384, 2019 09.
Article in English | MEDLINE | ID: mdl-31486251

ABSTRACT

INTRODUCTION: The chemokine receptor CCR5 is the main co-receptor for R5-tropic HIV-1 variants. We have previously described a novel 24-base pair deletion in the coding region of CCR5 among individuals from Rwanda. Here, we investigated the prevalence of hCCR5Δ24 in different cohorts and its impact on CCR5 expression and HIV-1 infection in vitro. METHODS: We screened hCCR5Δ24 in a total of 3232 individuals which were either HIV-1 uninfected, high-risk HIV-1 seronegative and seropositive partners from serodiscordant couples, Long-Term Survivors, or HIV-1 infected volunteers from Africa (Rwanda, Kenya, Guinea-Conakry) and Luxembourg, using a real-time PCR assay. The role of the 24-base pair deletion on CCR5 expression and HIV infection was assessed in cell lines and PBMC using mRNA quantification, confocal analysis, flow and imaging cytometry. RESULTS AND DISCUSSION: Among the 1661 patients from Rwanda, 12 individuals were heterozygous for hCCR5Δ24 but none were homozygous. Although heterozygosity for this allele may not confer complete resistance to HIV-1 infection, the prevalence of the mutation was 2.41% (95%CI: 0.43; 8.37) in 83 Long-Term Survivors (LTS) and 0.99% (95%CI: 0.45; 2.14) in 613 HIV-1 exposed seronegative members as compared with 0.35% (95% Cl: 0.06; 1.25) in 579 HIV-1 seropositive members. The prevalence of hCCR5Δ24 was 0.55% (95%CI: 0.15; 1.69) in 547 infants from Kenya but the mutation was not detected in 224 infants from Guinea-Conakry nor in 800 Caucasian individuals from Luxembourg. Expression of hCCR5Δ24 in cell lines and PBMC showed that the hCCR5Δ24 protein is stably expressed but is not transported to the plasma membrane due to a conformational change. Instead, the mutant receptor was retained intracellularly, colocalized with an endoplasmic reticulum marker and did not mediate HIV-1 infection. Co-transfection of hCCR5Δ24 and wtCCR5 did not indicate a transdominant negative effect of CCR5Δ24 on wtCCR5. CONCLUSIONS: Our findings indicate that hCCR5Δ24 is not expressed at the cell surface. This could explain the higher prevalence of the heterozygous hCCR5Δ24 in LTS and HIV-1 exposed seronegative members from serodiscordant couples. Our data suggest an East-African localization of this deletion, which needs to be confirmed in larger cohorts from African and non-African countries.


Subject(s)
HIV Infections/genetics , Receptors, CCR5/genetics , Receptors, CCR5/immunology , Alleles , Cell Membrane/genetics , Cell Membrane/metabolism , Cohort Studies , Disease Resistance , Female , Guinea , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/physiology , Heterozygote , Humans , Infant , Kenya , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Male , Mutation , Receptors, CCR5/metabolism , Rwanda , Sequence Deletion
3.
Mol Oncol ; 13(12): 2531-2553, 2019 12.
Article in English | MEDLINE | ID: mdl-31365168

ABSTRACT

Directing selective complement activation towards tumour cells is an attractive strategy to promote their elimination. In the present work, we have generated heteromultimeric immunoconjugates that selectively activate the complement alternative pathway (AP) on tumour cells. We used the C4b-binding protein C-terminal-α-/ß-chain scaffold for multimerisation to generate heteromultimeric immunoconjugates displaying (a) a multivalent-positive regulator of the AP, the human factor H-related protein 4 (FHR4) with; (b) a multivalent targeting function directed against erbB2 (HER2); and (c) a monovalent enhanced GFP tracking function. Two distinct VH H targeting two different epitopes against HER2 and competing either with trastuzumab or with pertuzumab-recognising epitopes [VH H(T) or VH H(P)], respectively, were used as HER2 anchoring moieties. Optimised high-FHR4 valence heteromultimeric immunoconjugates [FHR4/VH H(T) or FHR4/VH H(P)] were selected by sequential cell cloning and a selective multistep His-Trap purification. Optimised FHR4-heteromultimeric immunoconjugates successfully overcame FH-mediated complement inhibition threshold, causing increased C3b deposition on SK-OV-3, BT474 and SK-BR3 tumour cells, and increased formation of lytic membrane attack complex densities and complement-dependent cytotoxicity (CDC). CDC varies according to the pattern expression and densities of membrane-anchored complement regulatory proteins on tumour cell surfaces. In addition, opsonised BT474 tumour cells were efficiently phagocytosed by macrophages through complement-dependent cell-mediated cytotoxicity. We showed that the degree of FHR4-multivalency within the multimeric immunoconjugates was the key element to efficiently compete and deregulate FH and FH-mediated convertase decay locally on tumour cell surface. FHR4 can thus represent a novel therapeutic molecule, when expressed as a multimeric entity and associated with an anchoring system, to locally shift the complement steady-state towards activation on tumour cell surface.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents, Immunological , Apolipoproteins/immunology , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Immunoconjugates , Neoplasms , Receptor, ErbB-2 , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , Apolipoproteins/antagonists & inhibitors , Cell Line, Tumor , Complement Activation/immunology , HEK293 Cells , Humans , Immunoconjugates/immunology , Immunoconjugates/pharmacology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology
4.
PLoS One ; 11(9): e0161596, 2016.
Article in English | MEDLINE | ID: mdl-27598717

ABSTRACT

The cytoplasmic tail (gp41CT) of the HIV-1 envelope (Env) mediates Env incorporation into virions and regulates Env intracellular trafficking. Little is known about the functional impact of variability in this domain. To address this issue, we compared the replication of recombinant virus pairs carrying the full Env (Env viruses) or the Env ectodomain fused to the gp41CT of NL4.3 (EnvEC viruses) (12 subtype C and 10 subtype B pairs) in primary CD4+ T-cells and monocyte-derived-macrophages (MDMs). In CD4+ T-cells, replication was as follows: B-EnvEC = B-Env>C-EnvEC>C-Env, indicating that the gp41CT of subtype C contributes to the low replicative capacity of this subtype. In MDMs, in contrast, replication capacity was comparable for all viruses regardless of subtype and of gp41CT. In CD4+ T-cells, viral entry, viral release and viral gene expression were similar. However, infectivity of free virions and cell-to-cell transmission of C-Env viruses released by CD4+ T-cells was lower, suggestive of lower Env incorporation into virions. Subtype C matrix only minimally rescued viral replication and failed to restore infectivity of free viruses and cell-to-cell transmission. Taken together, these results show that polymorphisms in the gp41CT contribute to viral replication capacity and suggest that the number of Env spikes per virion may vary across subtypes. These findings should be taken into consideration in the design of vaccines.


Subject(s)
HIV Infections/transmission , HIV-1/genetics , Virus Replication/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , CD4-Positive T-Lymphocytes/virology , Cell Line , HIV Envelope Protein gp41/genetics , HIV Infections/genetics , HIV Infections/virology , HIV-1/pathogenicity , Humans , Virion/genetics , Virus Internalization
5.
AIDS Res Hum Retroviruses ; 31(5): 554-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25654164

ABSTRACT

A new recombinant form representing a mosaic of HIV-1 subtype B and F1 and designated as CRF42_BF was identified in Luxembourg. We confirmed the inedited nature of CRF42_BF by near full-length genome characterization and retrieved a possible ancestor originating from Brazil. The demographic history of CRF42_BF in Luxembourg using Bayesian coalescent-based methods was investigated. The exponential phase of the logistic growth happened in a very short time period of approximately 5 months associated with a high mean rate of population growth of 15.02 new infections per year. However, CRF42_BF was not characterized by either a higher ex vivo replication capacity in peripheral blood mononuclear cells (PBMCs) or a higher ex vivo transmission efficiency from monocyte-derived dendritic cells to PBMCs as compared to B and F1 viruses. These data do not support a high pathogenic potential of CFR42_BF but rather an initial bursting spread of the recombinant probably due to a more favorable transmission route.


Subject(s)
Genotype , HIV Infections/virology , HIV-1/classification , HIV-1/isolation & purification , RNA, Viral/genetics , HIV Infections/epidemiology , HIV-1/genetics , HIV-1/physiology , Humans , Leukocytes, Mononuclear/virology , Luxembourg/epidemiology , Molecular Epidemiology , Molecular Sequence Data , Phylogeny , Recombination, Genetic , Sequence Analysis, DNA , Sequence Homology , Virus Replication
6.
Hum Mutat ; 34(5): 725-34, 2013 May.
Article in English | MEDLINE | ID: mdl-23418033

ABSTRACT

Cytochrome P450 CYP2B6 is a highly polymorphic enzyme that metabolizes numerous drugs, pesticides, and environmental toxins. Sequence analysis of a Rwandese population identified eight functionally uncharacterized nonsynonymous variants c.329G>T (p.G110V), c.341T>C (p.I114T), c.444G>T (p.E148D), c.548T>G (p.V183G), c.637T>C (p.F213L), c.758G>A (p.R253H), c.835G>C (p.A279P), and c.1459C>A (p.R487S), and five novel alleles termed CYP2B6*33 to CYP2B6*37 were assigned. Recombinant expression in COS-1 cells and functional characterization using the antidepressant bupropion and the antiretroviral efavirenz (EFV) as substrates demonstrated complete or almost complete loss-of-function for variants p.G110V, p.I114T, p.V183G, and p.F213L, whereas p.E148D, p.R253H, p.A279P, and p.R487S variants were functional. The data were used to assess the predictive power of eight online available functional prediction programs for amino-acid changes. Although none of the programs correctly predicted the functionality of all variants, substrate docking simulation analyses indicated similar conformational changes by all four deleterious mutations within the enzyme's active site, thus explaining lack of enzymatic function for both substrates. Because low-activity alleles of CYP2B6 are associated with impaired EFV metabolism and adverse drug response, these results are of potential utility for personalized treatment strategies in HIV/AIDS therapy.


Subject(s)
Aryl Hydrocarbon Hydroxylases/genetics , Genetics, Population , Oxidoreductases, N-Demethylating/genetics , Aryl Hydrocarbon Hydroxylases/chemistry , Blotting, Western , Cytochrome P-450 CYP2B6 , Haplotypes , Humans , Molecular Dynamics Simulation , Mutation , Oxidoreductases, N-Demethylating/chemistry , Polymorphism, Single Nucleotide , Rwanda
SELECTION OF CITATIONS
SEARCH DETAIL
...