Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacokinet Pharmacodyn ; 46(6): 553-564, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31571122

ABSTRACT

A model for the homeostasis of glucose through the regulating hormones glucagon and insulin is described. It contains a subsystem that models the internalization of the glucagon receptor. Internalization is a mechanism in cell signaling, through which G-protein coupled receptors are taken from the surface of the cell to the endosome. The model is used to interpret data from a glucagon challenge test in which subjects have been under treatment with a novel glucagon receptor anti-sense drug which is aimed at reducing the number of receptors in the liver. It is shown how the receptor internalization results in tolerance of the blood glucose concentration to glucagon-induced hyperglycemia. We quantify the reduction of the number of receptors using the model and the data before and after treatment.


Subject(s)
Glucagon/metabolism , Blood Glucose/metabolism , Glucose/metabolism , Glucose Tolerance Test/methods , Humans , Hyperglycemia/metabolism , Insulin/metabolism , Models, Theoretical , Receptors, Glucagon/metabolism
2.
ACS Synth Biol ; 4(6): 735-45, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25365785

ABSTRACT

Molecular programming allows for the bottom-up engineering of biochemical reaction networks in a controlled in vitro setting. These engineered biochemical reaction networks yield important insight in the design principles of biological systems and can potentially enrich molecular diagnostic systems. The DNA polymerase-nickase-exonuclease (PEN) toolbox has recently been used to program oscillatory and bistable biochemical networks using a minimal number of components. Previous work has reported the automatic construction of in silico descriptions of biochemical networks derived from the PEN toolbox, paving the way for generating networks of arbitrary size and complexity in vitro. Here, we report an automated approach that further bridges the gap between an in silico description and in vitro realization. A biochemical network of arbitrary complexity can be globally screened for parameter values that display the desired function and combining this approach with robustness analysis further increases the chance of successful in vitro implementation. Moreover, we present an automated design procedure for generating optimal DNA sequences, exhibiting key characteristics deduced from the in silico analysis. Our in silico method has been tested on a previously reported network, the Oligator, and has also been applied to the design of a reaction network capable of displaying adaptation in one of its components. Finally, we experimentally characterize unproductive sequestration of the exonuclease to phosphorothioate protected ssDNA strands. The strong nonlinearities in the degradation of active components caused by this unintended cross-coupling are shown computationally to have a positive effect on adaptation quality.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , DNA/metabolism , Deoxyribonuclease I/metabolism , Exonucleases/metabolism , Algorithms , Base Sequence , Computer Simulation , DNA/chemistry , DNA/genetics , Gene Regulatory Networks , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...