Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 231: 113258, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33812707

ABSTRACT

We have performed cross-sectional scanning capacitance microscopy (SCM), cathodoluminescence (CL) microscopy in the scanning electron microscope (SEM) and transmission electron microscopy (TEM) all on the same few-micron region of a GaN/sapphire sample. To achieve this, it was necessary to develop a process flow which allowed the same features viewed in a cleaved cross-section to be traced from one microscope to the next and to adapt the focused ion beam preparation of the TEM lamella to allow preparation of a site-specific sample on a pre-cleaved cross-section. Growth of our GaN/sapphire samples involved coalescence of three-dimensional islands to form a continuous film. Highly doped marker layers were included in the sample so that coalescence boundaries formed late in the film growth process could be identified in SCM and CL. Using TEM, we then identified one or more dislocations associated with each of several such late-coalescing boundaries. In contrast, previous studies have addressed coalescence boundaries formed earlier in the growth process and have shown that early-stage island coalescence does not lead to dislocation formation.

2.
Ultramicroscopy ; 231: 113255, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33762123

ABSTRACT

Directly correlated measurements of the surface morphology, light emission and subsurface structure and composition were carried out on the exact same nanoscale trench defects in InGaN quantum well (QW) structures. Multiple scanning probe, scanning electron and transmission electron microscopy techniques were used to explain the origin of their unusual emission behaviour and the relationship between surface morphology and cathodoluminescence (CL) redshift. Trench defects comprise of an open trench partially or fully enclosing material in InGaN QWs with different CL emission properties to their surroundings. The CL redshift was shown to typically vary with the width of the trench and the prominence of the material enclosed by the trench above its surroundings. Three defects, encompassing typical and atypical features, were prepared into lamellae for transmission electron microscopy (TEM). A cross marker technique was used in the focused ion beam-scanning electron microscope (FIB-SEM) to centre the previously characterised defects in each lamella for further analysis. The defects with wider trenches and strong redshifts in CL emission had their initiating basal-plane stacking fault (BSF) towards the bottom of the QW stack, while the BSF formed near the top of the QW stack for a defect with a narrow trench and minimal redshift. The raised-centre, prominent defect showed a slight increase in QW thickness moving up the QW stack while QW widths in the level-centred defect remained broadly constant. The indium content of the enclosed QWs increased above the BSF positions up to a maximum, with an increase of approximately 4% relative to the surroundings seen for one defect examined. Gross fluctuations in QW width (GWWFs) were present in the surrounding material in this sample but were not seen in QWs enclosed by the defect volumes. These GWWFs have been linked with indium loss from surface step edges two or more monolayers high, and many surface step edges appear pinned by the open trenches, suggesting another reason for the higher indium content seen in QWs enclosed by trench defects.

3.
Ultramicroscopy ; 212: 112970, 2020 May.
Article in English | MEDLINE | ID: mdl-32114315

ABSTRACT

We describe the use of a cross-shaped platinum marker deposited using electron-beam-induced deposition (EBID) in a focused ion beam - scanning electron microscope (FIB-SEM) system to facilitate site-specific preparation of a TEM foil containing a trench defect in an InGaN/GaN multiple quantum well structure. The defect feature is less than 100 nm wide at the surface. The marker is deposited prior to the deposition of a protective platinum strap (also by EBID) with the centre of the cross indicating the location of the feature of interest, while the arms of the square cross make an acute angle of 45° with the strap's long axis. During the ion-beam thinning process, the marker may be viewed in cross-section from both sides of the sample alternately, and the coming together of the features relating to the arms of the cross indicates increasing proximity to the feature of interest. Although this approach does allow increased precision in locating the region of interest during thinning, it also increases the time required to complete the sample preparation. Hence, this method is particularly well suited to directly correlated multi-microscopy investigations in previously characterised material where high yield and the precise location are more important than preparation time. In addition to TEM lamella preparation, this method could equally be useful for preparing site-specific atom probe tomography (APT) samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...