Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(14): 12830-12841, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37065057

ABSTRACT

Ethylene propylene diene monomer (EPDM) is one of the most used polymers in the world. It is an elastomer, which means that the existing cross-linking between the main chains of the polymer created during the vulcanization process makes its recycling difficult. In this paper, a possible solution to this issue is studied. The devulcanization of EPDM is achieved by a thermomechanical process followed by microwave irradiation. These combined treatments suppress the cross-linking, yielding a material (EPDMd) that can be successfully blended to form composites. A common elastomer, styrene butadiene rubber (SBR), has been selected as the matrix. The new SBR/EPDMd composites can be useful as elastomeric dielectric materials and can contribute to the recycling of the discarded EPDM. To provide a better understanding of their microstructure and its relationship with their micro- and macroscopic behavior, samples containing 20 and 40% of EPDMd have been tested by thermogravimetric and dielectric analysis, focusing on variables such as the thermal properties of the blends, permittivity, electric modulus, conductivity, and activation energies. The results show interesting changes linked to the presence of EPDMd in the SBR matrix, such as the displacement of the ß dielectric relaxation toward higher frequencies. The correct integration between the two phases is confirmed by the absence of any Maxwell-Wagner-Sillars type relaxation in their dielectric behavior. The presence of additives in the EPDMd samples has an effect on the conductivity, mainly due to the conductive aluminum silicate present in the EPDMd, which acts toward increasing some key dielectric features like conductivity and permittivity and decreasing the insulation of the final SBR/EPDMd materials. The inclusion of EPDMd also affects the α relaxations (low frequencies) and suppresses the ß relaxations (high frequencies). The samples showed a non-Debye dielectric behavior. In short, a compact and well-integrated material with a dielectric behavior is created, which exhibits interesting differences from the reference SBR matrix. Finally, it is concluded that the compounds tested are suitable for applications as electrical insulators.

2.
Materials (Basel) ; 14(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885476

ABSTRACT

This article proposes a new model of power supply for mobile low power machines applications, between 10 W and 30 W, such as radio-controlled (RC) electric cars. This power supply is based on general hydrogen from residual aluminum and water with NaOH, so it is proposed energy valorization of aluminum waste. In the present research, a theoretical model allows us to predict the requested aluminum surface and the required flow of hydrogen has been developed, also considering, in addition to the geometry and purity of the material, two key variables as the temperature and the molarity of the alkaline solution used in the hydrogen production process. Focusing on hydrogen production, isopropyl alcohol plays a key role in the reactor's fuel cell vehicle as it filters out NaOH particles and maintains a constant flow of hydrogen for the operation of the machine, keeping the reactor temperature controlled. Finally, a comparison of the theoretical and experimental data has been used to validate the developed model using aluminum sheets from ring cans to generate hydrogen, which will be used as a source of hydrogen in a power fuel cell of an RC car. Finally, the manuscript shows the parts of the vehicle's powertrain, its behavior, and mode of operation.

3.
Polymers (Basel) ; 13(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34641029

ABSTRACT

Waste from pneumatic wheels is one of the major environmental problems, and the scientific community is looking for methods to recycle this type of waste. In this paper, ground tire rubber particles (GTR) from disused tires have been mixed with samples of low-density polyethylene (LDPE) and high-density polyethylene (HDPE), and morphological tests have been performed using scanning electron microscopy (SEM), as well as the dynamic electric analysis (DEA) dielectric characterization technique using impedance spectroscopy. From this experience, how GTR reinforcement influences polyethylene and what influence GTR particles have on the branched polyethylene has been detected. For pure LDPE samples, a Debye-type dielectric behavior is observed with an imperfect semicircle, which depends on the temperature, as it shows differences for the samples at 30 °C and 120 °C, unlike the HDPE samples, which do not show such a trend. The behavior in samples with Debye behavior is like an almost perfect dipole and is due to the crystalline behavior of polyethylene at high temperature and without any reinforcement. These have been obtained evidence that for branched PE (LPDE) the Maxwell Wagner Sillars (MWS) effect is highly remarkable and that this happens due to the intrachain polarization effect combined with MWS. This means that the permittivity and conductivity at LDPE/50%GTR are high than LDPE/70%GTR. However, it does not always occur that way with HDPE composites in which HDPE/70%GTR has the highest values of permittivity and conductivity, due to the presence of conductive fraction (Carbon Black-30%) in the GTR particles and their dielectric behavior.

4.
Materials (Basel) ; 13(23)2020 Dec 06.
Article in English | MEDLINE | ID: mdl-33291275

ABSTRACT

Currently, the huge use of tires generates large quantities of waste material which represents a severe environmental problem. The common technique used for processing waste tires is crushing using mechanical methods and separating tire components like fibers, metals, and rubber from the used tire. The aim of this research is the recycling of this rubber from crushed tires, called ground tire rubber (GTR). With this aim, the manuscript analyses key mechanical properties of the thermoplastic composites produced by blending of crushed and micronized small particles of waste rubber tires with several industrial thermoplastic polymers. These types of composites are defined based on the total amount GTR in percent by weight, in the composite, and also, the particle sizes used in each case, so these aforementioned two variables (microparticle size and amounts) along with seven common industrial polymers define a series of composites for which the mechanical properties were tested, studied, analyzed and finally presented. Finally, the results obtained show that this proposed recycling method could be a way to enhance some specific polymer properties and could contribute to reducing the total of end of life used tire stocks environmental problem.

5.
Polymers (Basel) ; 12(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198382

ABSTRACT

The purpose of the present research is to obtain waste of polymeric composite as an insulator capacitive application. Rubber materials, once they end their useful life, may be difficult to reuse or recycle. At present, research only uses one tire recycling method, which involves grinding and separating steel and fibers from vulcanized rubber, and then using the rubber particles for industrial capacitors. The methodology for this research is to compare the permittivity (ε' and ε″) between high-density polyethylene (HDPE) and the polymer matrix compound, consisting of an HDPE polymeric matrix blended with end-of-life tire particles (ground tire rubber (GTR)), to analyze the feasibility of using such tires as electrically insulating materials (dielectrics). The incorporation of carbon black in the GTR compounds modifies conductivity; GTRs carry a significant amount of carbon black, and therefore some electrical properties may change significantly compared to highly insulating polymer substrates. The performed experimental study is based on a dynamic electric analysis (DEA) test developed in the frequency range of 10-2 Hz to 3 MHz and at different temperatures (from 35 to 70 °C) of different samples type: HDPE neat and HDPE compounds with 10%, 20% and 40% of GTR loads. A sample's electrical behavior is checked for its dependence on frequency and temperature, focused on the permittivity property; this is a key property for capacitive insulators and is key for examining the possible applications in this field, for HDPE + GTR blends. Results for the permittivity behavior and the loss factor show different electrical behavior. For a neat HDPE sample, no dependence with frequency nor temperature is shown. However, with the addition of 10%, 20%, and 40% amount of GTR the HDPE compounds show different behaviors: for low frequencies, interfacial polarization relaxation is seen, due to the Maxwell-Wagner-Sillars (MWS) effect, performed in heterogeneous materials. In order to analyze thermal and morphological properties the differential scanning calorimetry (DSC) test and scanning electron microscopy (SEM) have been used. Results obtained show that adding waste tire particles in an HDPE matrix allows HDPE + 40% GTR blends to act as a dielectric in capacitors, increasing the capacitor dielectric efficiency in the low frequencies due to the MWS effect, which increases the dielectric constant.

SELECTION OF CITATIONS
SEARCH DETAIL
...