Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 14: 1347813, 2024.
Article in English | MEDLINE | ID: mdl-38487353

ABSTRACT

Introduction: Different serovars of Salmonella enterica cause systemic diseases in humans including enteric fever, caused by S. Typhi and S. Paratyphi A, and invasive nontyphoidal salmonellosis (iNTS), caused mainly by S. Typhimurium and S. Enteritidis. No vaccines are yet available against paratyphoid fever and iNTS but different strategies, based on the immunodominant O-Antigen component of the lipopolysaccharide, are currently being tested. The O-Antigens of S. enterica serovars share structural features including the backbone comprising mannose, rhamnose and galactose as well as further modifications such as O-acetylation and glucosylation. The importance of these O-Antigen decorations for the induced immunogenicity and cross-reactivity has been poorly characterized. Methods: These immunological aspects were investigated in this study using Generalized Modules for Membrane Antigens (GMMA) as delivery systems for the different O-Antigen variants. This platform allowed the rapid generation and in vivo testing of defined and controlled polysaccharide structures through genetic manipulation of the O-Antigen biosynthetic genes. Results: Results from mice and rabbit immunization experiments highlighted the important role played by secondary O-Antigen decorations in the induced immunogenicity. Moreover, molecular modeling of O-Antigen conformations corroborated the likelihood of cross-protection between S. enterica serovars. Discussion: Such results, if confirmed in humans, could have a great impact on the design of a simplified vaccine composition able to maximize functional immune responses against clinically relevant Salmonella enterica serovars.


Subject(s)
Salmonella Infections , Salmonella Vaccines , Salmonella enterica , Humans , Animals , Mice , Rabbits , O Antigens/genetics , Salmonella enterica/genetics , Salmonella typhimurium/genetics , Serogroup , Immunity , Models, Animal , Salmonella Vaccines/genetics
2.
J Immunol Methods ; 526: 113618, 2024 03.
Article in English | MEDLINE | ID: mdl-38237697

ABSTRACT

The high burden of disease and the long-lasting sequelae following Streptococcus pyogenes (Strep A) infections make the development of an effective vaccine a global health priority. Streptolysin O (SLO), is a key toxin in the complex pathogenesis of Strep A infection. Antibodies are elicited against SLO after natural exposure and represent a key target for vaccine-induced immunity. Here we present the setup and characterization of a hemolysis assay to measure functionality of anti-SLO antibodies in human sera. Assay specificity, precision, linearity, reproducibility, and repeatability were determined. The assay was demonstrated to be highly sensitive, specific, reproducible, linear and performed well in assessing functionality of anti-SLO antibodies induced by exposed individuals. Moreover, different sources of critical reagents, in particular red- blood cells, have been compared and had minimal impact on assay performance. The assay presented here has throughput suitable for evaluating sera in vaccine clinical trials and sero-epidemiological studies to gain further insights into the functionality of infection- and vaccine-induced antibodies.


Subject(s)
Streptococcal Infections , Vaccines , Humans , Streptococcus pyogenes , Hemolysis , Reproducibility of Results , Streptolysins/pharmacology , Bacterial Proteins , Antibodies/pharmacology , Streptococcal Infections/diagnosis
3.
Vaccines (Basel) ; 11(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38140177

ABSTRACT

Glycoconjugate vaccines play a major role in the prevention of infectious diseases worldwide, with significant impact on global health, enabling the polysaccharides to induce immunogenicity in infants and immunological memory. Tetanus toxoid (TT), a chemically detoxified bacterial toxin, is among the few carrier proteins used in licensed glycoconjugate vaccines. The recombinant full-length 8MTT was engineered in E. coli with eight individual amino acid mutations to inactivate three toxin functions. Previous studies in mice showed that 8MTT elicits a strong IgG response, confers protection, and can be used as a carrier protein. Here, we compared 8MTT to traditional carrier proteins TT and cross-reactive material 197 (CRM197), using different polysaccharides as models: Group A Streptococcus cell-wall carbohydrate (GAC), Salmonella Typhi Vi, and Neisseria meningitidis serogroups A, C, W, and Y. The persistency of the antibodies induced, the ability of the glycoconjugates to elicit booster response after re-injection at a later time point, the eventual carrier-induced epitopic suppression, and immune interference in multicomponent formulations were also evaluated. Overall, immunogenicity responses obtained with 8MTT glycoconjugates were compared to those obtained with corresponding TT and, in some cases, were higher than those induced by CRM197 glycoconjugates. Our results support the use of 8MTT as a good alternative carrier protein for glycoconjugate vaccines, with advantages in terms of manufacturability compared to TT.

4.
Carbohydr Polym ; 311: 120736, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37028871

ABSTRACT

Group A Carbohydrate (GAC), conjugated to an appropriate carrier protein, has been proposed as an attractive vaccine candidate against Group A Streptococcus infections. Native GAC consists of a polyrhamnose (polyRha) backbone with N-acetylglucosamine (GlcNAc) at every second rhamnose residue. Both native GAC and the polyRha backbone have been proposed as vaccine components. Here, chemical synthesis and glycoengineering were used to generate a panel of different length GAC and polyrhamnose fragments. Biochemical analyses were performed confirming that the epitope motif of GAC is composed of GlcNAc in the context of the polyrhamnose backbone. Conjugates from GAC isolated and purified from a bacterial strain and polyRha genetically expressed in E. coli and with similar molecular size to GAC were compared in different animal models. The GAC conjugate elicited higher anti-GAC IgG levels with stronger binding capacity to Group A Streptococcus strains than the polyRha one, both in mice and in rabbits. This work contributes to the development of a vaccine against Group A Streptococcus suggesting GAC as preferable saccharide antigen to include in the vaccine.


Subject(s)
Acetylglucosamine , Vaccines , Mice , Animals , Rabbits , Acetylglucosamine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Carbohydrates , Streptococcus pyogenes/metabolism , Glycoconjugates/metabolism
5.
Methods Protoc ; 5(4)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35893581

ABSTRACT

The measurement of antibodies to vaccine antigens is crucial for research towards a safe and effective vaccine for Streptococcus pyogenes (Strep A). We describe the establishment and detailed characterisation of a four-plex assay to measure IgG to the Strep A vaccine antigens SpyCEP, Slo, SpyAD and GAC using the Luminex multiplex platform. A standard curve was established and characterized to allow the quantification of antigen-specific IgG. Assay specificity, precision, linearity, reproducibility and repeatability were determined via the measurement of antigen-specific IgG from pooled human serum. The assay is highly specific, reproducible and performs well across a large range of antibody concentrations against all four antigens. It is, therefore, suitable for future clinical trials in humans with a four-component vaccine, as well as for seroepidemiological studies to gain insights into naturally occurring immunity.

6.
Vaccines (Basel) ; 10(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35891202

ABSTRACT

Group A Streptococcus (GAS) causes about 500,000 annual deaths globally, and no vaccines are currently available. The Group A Carbohydrate (GAC), conserved across all GAS serotypes, conjugated to an appropriate carrier protein, represents a promising vaccine candidate. Here, we explored the possibility to use Generalized Modules for Membrane Antigens (GMMA) as an alternative carrier system for GAC, exploiting their intrinsic adjuvant properties. Immunogenicity of GAC-GMMA conjugate was evaluated in different animal species in comparison to GAC-CRM197; and the two conjugates were also compared from a techno-economic point of view. GMMA proved to be a good alternative carrier for GAC, resulting in a higher immune response compared to CRM197 in different mice strains, as verified by ELISA and FACS analyses. Differently from CRM197, GMMA induced significant levels of anti-GAC IgG titers in mice also in the absence of Alhydrogel. In rabbits, a difference in the immune response could not be appreciated; however, antibodies from GAC-GMMA-immunized animals showed higher affinity toward purified GAC antigen compared to those elicited by GAC-CRM197. In addition, the GAC-GMMA production process proved to be more cost-effective, making this conjugate particularly attractive for low- and middle-income countries, where this pathogen has a huge burden.

7.
Microorganisms ; 9(11)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34835485

ABSTRACT

Shigellosis is a diarrheal disease caused prevalently by Shigella flexneri and S. sonnei and representing a major global health risk, particularly in developing countries. Bacterial O-antigen (OAg) is the primary target of the host immune response and modifications of its oligosaccharide units, including O-acetylation, are responsible for the variability among the circulating S. flexneri serotypes. No vaccines are widely available against shigellosis and the understanding of the immunogenicity induced by the OAg is fundamental for the design of a vaccine that could cover the most prevalent Shigella serotypes. To understand whether a different O-acetylation pattern could influence the immune response elicited by S. flexneri OAg, we employed as a vaccine technology GMMA purified from S. flexneri 2a and 1b strains that were easily engineered to obtain differently O-acetylated OAg. Resulting GMMA were tested in mice, demonstrating not only no major impact of O-acetyl decorations on the immune response elicited by the two OAg against the homologous strains, but also that the O-acetylation of the Rhamnose III residue (O-factor 9), shared among serotypes 1b, 2a and 6, does not induce cross-reactive antibodies against these serotypes. This work contributes to the optimization of vaccine design against Shigella, providing indication about the ability of shared epitopes to elicit broad protection against S. flexneri serotypes and supporting the identification of critical quality attributes of OAg-based vaccines.

8.
Eur J Pharm Sci ; 86: 136-42, 2016 Apr 30.
Article in English | MEDLINE | ID: mdl-26987608

ABSTRACT

Preclinical imaging modalities represent an essential tool to develop a modern and translational biomedical research. To date, Optical Imaging (OI) and Magnetic Resonance Imaging (MRI) are used principally in separate studies for molecular imaging studies. We decided to combine OI and MRI together through the development of a lentiviral vector to monitor the Wnt pathway response to Lithium Chloride (LiCl) treatment. The construct was stably infected in glioblastoma cells and, after intracranial transplantation in mice, serial MRI and OI imaging sessions were performed to detect human ferritin heavy chain protein (hFTH) and firefly luciferase enzyme (FLuc) respectively. The system allowed also ex vivo analysis using a constitutive fluorescence protein expression. In mice, LiCl administration has shown significantly increment of luminescence signal and a lower signal of T2 values (P<0.05), recorded noninvasively with OI and a 7 Tesla MRI scanner. This study indicates that OI and MRI can be performed in a single in vivo experiment, providing an in vivo proof-of-concept for drug discovery projects in preclinical phase.


Subject(s)
Genes, Reporter/genetics , Molecular Imaging , Animals , Apoferritins/genetics , Apoferritins/metabolism , Brain/metabolism , Cell Line, Tumor , Female , Gene Expression , Humans , Lithium Chloride/pharmacology , Luciferases, Firefly/genetics , Magnetic Resonance Imaging , Mice, Nude , Optical Imaging , Wnt Signaling Pathway
9.
Nat Chem Biol ; 11(5): 347-354, 2015 May.
Article in English | MEDLINE | ID: mdl-25848931

ABSTRACT

Huntington's disease (HD) is a currently incurable neurodegenerative condition caused by an abnormally expanded polyglutamine tract in huntingtin (HTT). We identified new modifiers of mutant HTT toxicity by performing a large-scale 'druggable genome' siRNA screen in human cultured cells, followed by hit validation in Drosophila. We focused on glutaminyl cyclase (QPCT), which had one of the strongest effects on mutant HTT-induced toxicity and aggregation in the cell-based siRNA screen and also rescued these phenotypes in Drosophila. We found that QPCT inhibition induced the levels of the molecular chaperone αB-crystallin and reduced the aggregation of diverse proteins. We generated new QPCT inhibitors using in silico methods followed by in vitro screening, which rescued the HD-related phenotypes in cell, Drosophila and zebrafish HD models. Our data reveal a new HD druggable target affecting mutant HTT aggregation and provide proof of principle for a discovery pipeline from druggable genome screen to drug development.


Subject(s)
Aminoacyltransferases/drug effects , Aminoacyltransferases/genetics , Huntington Disease/drug therapy , Huntington Disease/genetics , RNA, Small Interfering , Aminoacyltransferases/antagonists & inhibitors , Animals , Cells, Cultured , Computational Biology , Drosophila , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Green Fluorescent Proteins/metabolism , Humans , Huntingtin Protein , Mice , Mice, Inbred C57BL , Mutation/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Zebrafish , alpha-Crystallin B Chain/metabolism
10.
Br J Clin Pharmacol ; 79(3): 465-76, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25223731

ABSTRACT

AIMS: Selisistat, a selective SirT1 inhibitor is being developed as a potentially disease-modifying therapeutic for Huntington's disease (HD). This was the first study of selisistat in HD patients and was primarily aimed at development of pharmacodynamic biomarkers. METHODS: This was a randomized, double-blind, placebo-controlled, multicentre exploratory study. Fifty-five male and female patients in early stage HD were randomized to receive 10 mg or 100 mg of selisistat or placebo once daily for 14 days. Blood sampling, clinical and safety assessments were conducted throughout the study. Candidate pharmacodynamic markers included circulating soluble huntingtin and innate immune markers. RESULTS: Selisistat was found to be safe and well tolerated, and systemic exposure parameters showed that the average steady-state plasma concentration achieved at the 10 mg dose level (125 nm) was comparable with the IC50 for SirT1 inhibition. No adverse effects on motor, cognitive or functional readouts were recorded. While circulating levels of soluble huntingtin were not affected by selisistat in this study, the biological samples collected have allowed development of assay technology for use in future studies. No effects on innate immune markers were seen. CONCLUSIONS: Selisistat was found to be safe and well tolerated in early stage HD patients at plasma concentrations within the anticipated therapeutic concentration range.


Subject(s)
Carbazoles/therapeutic use , Huntington Disease/drug therapy , Sirtuin 1/antagonists & inhibitors , Administration, Oral , Adolescent , Adult , Aged , Area Under Curve , Carbazoles/administration & dosage , Carbazoles/adverse effects , Carbazoles/blood , Cognition/drug effects , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Female , Humans , Huntington Disease/blood , Huntington Disease/psychology , Male , Middle Aged , Neuropsychological Tests , Severity of Illness Index , Tissue Distribution , Treatment Outcome , Young Adult
11.
Hum Mol Genet ; 23(11): 2995-3007, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24436303

ABSTRACT

Protein acetylation, which is central to transcriptional control as well as other cellular processes, is disrupted in Huntington's disease (HD). Treatments that restore global acetylation levels, such as inhibiting histone deacetylases (HDACs), are effective in suppressing HD pathology in model organisms. However, agents that selectively target the disease-relevant HDACs have not been available. SirT1 (Sir2 in Drosophila melanogaster) deacetylates histones and other proteins including transcription factors. Genetically reducing, but not eliminating, Sir2 has been shown to suppress HD pathology in model organisms. To date, small molecule inhibitors of sirtuins have exhibited low potency and unattractive pharmacological and biopharmaceutical properties. Here, we show that highly selective pharmacological inhibition of Drosophila Sir2 and mammalian SirT1 using the novel inhibitor selisistat (selisistat; 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) can suppress HD pathology caused by mutant huntingtin exon 1 fragments in Drosophila, mammalian cells and mice. We have validated Sir2 as the in vivo target of selisistat by showing that genetic elimination of Sir2 eradicates the effect of this inhibitor in Drosophila. The specificity of selisistat is shown by its effect on recombinant sirtuins in mammalian cells. Reduction of HD pathology by selisistat in Drosophila, mammalian cells and mouse models of HD suggests that this inhibitor has potential as an effective therapeutic treatment for human disease and may also serve as a tool to better understand the downstream pathways of SirT1/Sir2 that may be critical for HD.


Subject(s)
Carbazoles/administration & dosage , Drosophila Proteins/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Huntington Disease/drug therapy , Huntington Disease/enzymology , Sirtuin 1/antagonists & inhibitors , Sirtuins/antagonists & inhibitors , Animals , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Huntington Disease/genetics , Huntington Disease/pathology , Male , Mice , Mice, Inbred C57BL , PC12 Cells , Rats , Rats, Sprague-Dawley , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuins/genetics , Sirtuins/metabolism
12.
BMC Biochem ; 14: 34, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24274906

ABSTRACT

BACKGROUND: Huntington's disease (HD) is a monogenic disorder caused by an aberrant expansion of CAG repeats in the huntingtin gene (HTT). Pathogenesis is associated with expression of the mutant (mHTT) protein in the CNS, with its levels most likely related to disease progression and symptom severity. Since non-invasive methods to quantify HTT in the CNS do not exist, measuring amount of soluble HTT in peripheral cells represents an important step in development of disease-modifying interventions in HD. RESULTS: An ELISA assay using commercially available antibodies was developed to quantify HTT levels in complex matrices like mammalian cell cultures lysates and human samples. The immunoassay was optimized using a recombinant full-length HTT protein, and validated both on wild-type and mutant HTT species. The ability of the assay to detect significant variations of soluble HTT levels was evaluated using an HSP90 inhibitor that is known to enhance HTT degradation. Once optimized, the bioassay was applied to peripheral blood mononuclear cells (PBMCs) from HD patients, demonstrating good potential in tracking the disease course. CONCLUSIONS: The method described here represents a validated, simple and rapid bio-molecular assay to evaluate soluble HTT levels in blood cells as useful tool in disease and pharmacodynamic marker identification for observational and clinical trials.


Subject(s)
Blood Chemical Analysis/methods , Enzyme-Linked Immunosorbent Assay , Leukocytes, Mononuclear/metabolism , Nerve Tissue Proteins/blood , Antibodies/immunology , Enzyme-Linked Immunosorbent Assay/standards , HEK293 Cells , Humans , Huntingtin Protein , Huntington Disease/metabolism , Huntington Disease/pathology , Mass Spectrometry , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/standards , Quality Control , Recombinant Proteins/analysis , Recombinant Proteins/biosynthesis , Recombinant Proteins/standards
13.
J Biomol Screen ; 18(9): 984-96, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23562876

ABSTRACT

Huntington's Disease is a rare neurodegenerative disease caused by an abnormal expansion of CAG repeats encoding polyglutamine in the first exon of the huntingtin gene. N-terminal fragments containing polyglutamine (polyQ) sequences aggregate and can bind to cellular proteins, resulting in several pathophysiological consequences for affected neurons such as changes in gene transcription. One transcriptional pathway that has been implicated in HD pathogenesis is the CREB binding protein (CBP)/cAMP responsive element binding (CREB) pathway. We developed a phenotypic assay to screen for compounds that can reverse the transcriptional dysregulation of the pathway caused by induced mutated huntingtin protein (µHtt). 293/T-REx cells were stably co-transfected with an inducible full-length mutated huntingtin gene containing 138 glutamine repeats and with a reporter gene under control of the cAMP responsive element (CRE). One clone, which showed reversible inhibition of µHtt-induced reporter activity upon treatment with the neuroprotective Rho kinase inhibitor Y27632, was used for the development of a high-throughput phenotypic assay suitable for a primary screening campaign, which was performed on a library of 24,000 compounds. Several hit compounds were identified and validated further in a cell viability adenosine triphosphate assay. The assay has the potential for finding new drug candidates for the treatment of HD.


Subject(s)
Biological Assay , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neuroprotective Agents/pharmacology , Small Molecule Libraries/pharmacology , Amides/chemistry , Amides/pharmacology , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cell Line, Tumor , Gene Expression Regulation/drug effects , Genes, Reporter , Humans , Huntingtin Protein , Huntington Disease/drug therapy , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/chemistry , Peptides/chemistry , Peptides/metabolism , Protein Binding/drug effects , Pyridines/chemistry , Pyridines/pharmacology , Response Elements , Signal Transduction , Small Molecule Libraries/chemistry , Transcription, Genetic/drug effects , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...