Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
Plant Cell ; 34(9): 3168-3182, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35678568

ABSTRACT

Chemical exchange often serves as the first step in plant-microbe interactions and exchanges of various signals, nutrients, and metabolites continue throughout the interaction. Here, we highlight the role of metabolite exchanges and metabolic crosstalk in the microbiome-root-shoot-environment nexus. Roots secret a diverse set of metabolites; this assortment of root exudates, including secondary metabolites such as benzoxazinoids, coumarins, flavonoids, indolic compounds, and terpenes, shapes the rhizosphere microbiome. In turn, the rhizosphere microbiome affects plant growth and defense. These inter-kingdom chemical interactions are based on a metabolic circular economy, a seemingly wasteless system in which rhizosphere members exchange (i.e. consume, reuse, and redesign) metabolites. This review also describes the recently discovered phenomenon "Systemically Induced Root Exudation of Metabolites" in which the rhizosphere microbiome governs plant metabolism by inducing systemic responses that shift the metabolic profiles of root exudates. Metabolic exchange in the rhizosphere is based on chemical gradients that form specific microhabitats for microbial colonization and we describe recently developed high-resolution methods to study chemical interactions in the rhizosphere. Finally, we propose an action plan to advance the metabolic circular economy in the rhizosphere for sustainable solutions to the cumulative degradation of soil health in agricultural lands.


Subject(s)
Microbiota , Rhizosphere , Plant Roots , Soil , Soil Microbiology
3.
Annu Rev Genomics Hum Genet ; 23: 523-547, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35567278

ABSTRACT

The trillions of cells in the human body develop as a result of the fusion of two extremely specialized cells: an oocyte and a sperm. This process is essential for the continuation of our species, as it ensures that parental genetic information is mixed and passed on from generation to generation. In addition to producing oocytes, the female reproductive system must provide the environment for the appropriate development of the fetus until birth. New genomic and computational tools offer unique opportunities to study the tight spatiotemporal regulatory mechanisms that are required for the cycle of human reproduction. This review explores how single-cell technologies have been used to build cellular atlases of the human reproductive system across the life span and how these maps have proven useful to better understand reproductive pathologies and dissect the heterogeneity of in vitro model systems.


Subject(s)
Oocytes , Semen , Female , Genomics , Humans , Male , Reproduction/genetics , Spermatozoa
4.
Nat Genet ; 53(12): 1698-1711, 2021 12.
Article in English | MEDLINE | ID: mdl-34857954

ABSTRACT

The endometrium, the mucosal lining of the uterus, undergoes dynamic changes throughout the menstrual cycle in response to ovarian hormones. We have generated dense single-cell and spatial reference maps of the human uterus and three-dimensional endometrial organoid cultures. We dissect the signaling pathways that determine cell fate of the epithelial lineages in the lumenal and glandular microenvironments. Our benchmark of the endometrial organoids reveals the pathways and cell states regulating differentiation of the secretory and ciliated lineages both in vivo and in vitro. In vitro downregulation of WNT or NOTCH pathways increases the differentiation efficiency along the secretory and ciliated lineages, respectively. We utilize our cellular maps to deconvolute bulk data from endometrial cancers and endometriotic lesions, illuminating the cell types dominating in each of these disorders. These mechanistic insights provide a platform for future development of treatments for common conditions including endometriosis and endometrial carcinoma.


Subject(s)
Endometrium/physiology , Menstrual Cycle , Cell Differentiation , Cell Lineage , Cellular Microenvironment , Endometrial Neoplasms/pathology , Endometrium/embryology , Endometrium/pathology , Female , Gonadal Steroid Hormones/metabolism , Humans , In Vitro Techniques , Organoids , Receptors, Notch/metabolism , Signal Transduction , Spatio-Temporal Analysis , Tissue Culture Techniques , Transcriptome , Uterus/pathology , Wnt Proteins/metabolism
5.
PLoS Biol ; 19(10): e3001214, 2021 10.
Article in English | MEDLINE | ID: mdl-34634036

ABSTRACT

The intestine is lined with isolated lymphoid follicles (ILFs) that facilitate sampling of luminal antigens to elicit immune responses. Technical challenges related to the scarcity and small sizes of ILFs and their follicle-associated epithelium (FAE) impeded the characterization of their spatial gene expression programs. Here, we combined RNA sequencing of laser capture microdissected tissues with single-molecule transcript imaging to obtain a spatial gene expression map of the ILF and its associated FAE in the mouse small intestine. We identified zonated expression programs in both follicles and FAEs, with a decrease in enterocyte antimicrobial and absorption programs and a partial induction of expression programs normally observed at the villus tip. We further identified Lepr+ subepithelial telocytes at the FAE top, which are distinct from villus tip Lgr5+ telocytes. Our analysis exposes the epithelial and mesenchymal cell states associated with ILFs.


Subject(s)
Epithelium/metabolism , Gene Expression Regulation , Intestines/metabolism , Lymphoid Tissue/metabolism , Animals , Down-Regulation/genetics , Enterocytes/metabolism , Male , Mice, Inbred C57BL , Telocytes/metabolism
6.
Mol Syst Biol ; 16(12): e9682, 2020 12.
Article in English | MEDLINE | ID: mdl-33332768

ABSTRACT

Malignant cell growth is fueled by interactions between tumor cells and the stromal cells composing the tumor microenvironment. The human liver is a major site of tumors and metastases, but molecular identities and intercellular interactions of different cell types have not been resolved in these pathologies. Here, we apply single cell RNA-sequencing and spatial analysis of malignant and adjacent non-malignant liver tissues from five patients with cholangiocarcinoma or liver metastases. We find that stromal cells exhibit recurring, patient-independent expression programs, and reconstruct a ligand-receptor map that highlights recurring tumor-stroma interactions. By combining transcriptomics of laser-capture microdissected regions, we reconstruct a zonation atlas of hepatocytes in the non-malignant sites and characterize the spatial distribution of each cell type across the tumor microenvironment. Our analysis provides a resource for understanding human liver malignancies and may expose potential points of interventions.


Subject(s)
Anatomy, Artistic , Atlases as Topic , Liver Neoplasms/pathology , Single-Cell Analysis , Tumor Microenvironment , Animals , Endothelial Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Hepatocytes/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Mice , Tumor Microenvironment/genetics
7.
Blood ; 136(23): 2607-2619, 2020 12 03.
Article in English | MEDLINE | ID: mdl-32929449

ABSTRACT

The fate of hematopoietic stem and progenitor cells (HSPC) is tightly regulated by their bone marrow (BM) microenvironment (ME). BM transplantation (BMT) frequently requires irradiation preconditioning to ablate endogenous hematopoietic cells. Whether the stromal ME is damaged and how it recovers after irradiation is unknown. We report that BM mesenchymal stromal cells (MSC) undergo massive damage to their mitochondrial function after irradiation. Donor healthy HSPC transfer functional mitochondria to the stromal ME, thus improving mitochondria activity in recipient MSC. Mitochondrial transfer to MSC is cell-contact dependent and mediated by HSPC connexin-43 (Cx43). Hematopoietic Cx43-deficient chimeric mice show reduced mitochondria transfer, which was rescued upon re-expression of Cx43 in HSPC or culture with isolated mitochondria from Cx43 deficient HSPCs. Increased intracellular adenosine triphosphate levels activate the purinergic receptor P2RX7 and lead to reduced activity of adenosine 5'-monophosphate-activated protein kinase (AMPK) in HSPC, dramatically increasing mitochondria transfer to BM MSC. Host stromal ME recovery and donor HSPC engraftment were augmented after mitochondria transfer. Deficiency of Cx43 delayed mesenchymal and osteogenic regeneration while in vivo AMPK inhibition increased stromal recovery. As a consequence, the hematopoietic compartment reconstitution was improved because of the recovery of the supportive stromal ME. Our findings demonstrate that healthy donor HSPC not only reconstitute the hematopoietic system after transplantation, but also support and induce the metabolic recovery of their irradiated, damaged ME via mitochondria transfer. Understanding the mechanisms regulating stromal recovery after myeloablative stress are of high clinical interest to optimize BMT procedures and underscore the importance of accessory, non-HSC to accelerate hematopoietic engraftment.


Subject(s)
Bone Marrow/physiology , Connexin 43/metabolism , Hematopoietic Stem Cells/metabolism , Mitochondria/transplantation , Regeneration , Animals , Humans , Mice
8.
Cell ; 182(6): 1441-1459.e21, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32888430

ABSTRACT

Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.


Subject(s)
Crohn Disease/microbiology , Epithelial Cells/metabolism , Gastrointestinal Microbiome , Histocompatibility Antigens Class II/metabolism , Intestine, Small/immunology , Intestine, Small/microbiology , Transcriptome/genetics , Animals , Anti-Bacterial Agents/pharmacology , Circadian Clocks/physiology , Crohn Disease/immunology , Crohn Disease/metabolism , Diet , Epithelial Cells/cytology , Epithelial Cells/immunology , Flow Cytometry , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Gene Expression Profiling , Histocompatibility Antigens Class II/genetics , Homeostasis , In Situ Hybridization, Fluorescence , Interleukin-10/metabolism , Interleukin-10/pharmacology , Intestine, Small/physiology , Lymphocytes , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Periodicity , T-Lymphocytes/immunology , Transcriptome/physiology
9.
Nat Commun ; 11(1): 3547, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669546

ABSTRACT

Neutrophils provide first line of host defense against bacterial infections utilizing glycolysis for their effector functions. How glycolysis and its major byproduct lactate are triggered in bone marrow (BM) neutrophils and their contribution to neutrophil mobilization in acute inflammation is not clear. Here we report that bacterial lipopolysaccharides (LPS) or Salmonella Typhimurium triggers lactate release by increasing glycolysis, NADPH-oxidase-mediated reactive oxygen species and HIF-1α levels in BM neutrophils. Increased release of BM lactate preferentially promotes neutrophil mobilization by reducing endothelial VE-Cadherin expression, increasing BM vascular permeability via endothelial lactate-receptor GPR81 signaling. GPR81-/- mice mobilize reduced levels of neutrophils in response to LPS, unless rescued by VE-Cadherin disrupting antibodies. Lactate administration also induces release of the BM neutrophil mobilizers G-CSF, CXCL1 and CXCL2, indicating that this metabolite drives neutrophil mobilization via multiple pathways. Our study reveals a metabolic crosstalk between lactate-producing neutrophils and BM endothelium, which controls neutrophil mobilization under bacterial infection.


Subject(s)
Bone Marrow Cells/immunology , Lactic Acid/metabolism , Neutrophils/immunology , Receptors, G-Protein-Coupled/metabolism , Salmonella Infections/immunology , Animals , Bone Marrow/blood supply , Bone Marrow Cells/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Female , Humans , Lipopolysaccharides/immunology , Male , Mice , Mice, Knockout , Neutrophils/metabolism , Receptors, G-Protein-Coupled/genetics , Salmonella Infections/microbiology , Salmonella typhimurium/immunology , Signal Transduction/immunology
10.
Nat Chem Biol ; 16(7): 740-748, 2020 07.
Article in English | MEDLINE | ID: mdl-32424305

ABSTRACT

Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by 'hijacking' an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.


Subject(s)
Gene Expression Regulation, Plant , Glucosyltransferases/genetics , Glycosyltransferases/genetics , Plant Proteins/genetics , Saponins/biosynthesis , Spinacia oleracea/metabolism , Terpenes/metabolism , Beta vulgaris/genetics , Beta vulgaris/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Cellulose/metabolism , Endoplasmic Reticulum/metabolism , Gas Chromatography-Mass Spectrometry , Glucosyltransferases/metabolism , Glucuronic Acid/metabolism , Glycosylation , Glycosyltransferases/metabolism , Glycyrrhiza/genetics , Glycyrrhiza/metabolism , Plant Cells/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Spinacia oleracea/genetics
11.
Nat Commun ; 11(1): 1936, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321913

ABSTRACT

The intestinal epithelium is a structured organ composed of crypts harboring Lgr5+ stem cells, and villi harboring differentiated cells. Spatial transcriptomics have demonstrated profound zonation of epithelial gene expression along the villus axis, but the mechanisms shaping this spatial variability are unknown. Here, we combine laser capture micro-dissection and single cell RNA sequencing to uncover spatially zonated populations of mesenchymal cells along the crypt-villus axis. These include villus tip telocytes (VTTs) that express Lgr5, a gene previously considered a specific crypt epithelial stem cell marker. VTTs are elongated cells that line the villus tip epithelium and signal through Bmp morphogens and the non-canonical Wnt5a ligand. Their ablation is associated with perturbed zonation of enterocyte genes induced at the villus tip. Our study provides a spatially-resolved cell atlas of the small intestinal stroma and exposes Lgr5+ villus tip telocytes as regulators of the epithelial spatial expression programs along the villus axis.


Subject(s)
Enterocytes/metabolism , Intestinal Mucosa/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Enterocytes/cytology , Intestinal Mucosa/cytology , Intestine, Small/cytology , Intestine, Small/metabolism , Male , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/genetics , Stromal Cells/metabolism , Wnt-5a Protein/metabolism
12.
Proc Natl Acad Sci U S A ; 117(7): 3874-3883, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015118

ABSTRACT

Microbial communities associated with roots confer specific functions to their hosts, thereby modulating plant growth, health, and productivity. Yet, seminal questions remain largely unaddressed including whether and how the rhizosphere microbiome modulates root metabolism and exudation and, consequently, how plants fine tune this complex belowground web of interactions. Here we show that, through a process termed systemically induced root exudation of metabolites (SIREM), different microbial communities induce specific systemic changes in tomato root exudation. For instance, systemic exudation of acylsugars secondary metabolites is triggered by local colonization of bacteria affiliated with the genus Bacillus Moreover, both leaf and systemic root metabolomes and transcriptomes change according to the rhizosphere microbial community structure. Analysis of the systemic root metabolome points to glycosylated azelaic acid as a potential microbiome-induced signaling molecule that is subsequently exuded as free azelaic acid. Our results demonstrate that rhizosphere microbiome assembly drives the SIREM process at the molecular and chemical levels. It highlights a thus-far unexplored long-distance signaling phenomenon that may regulate soil conditioning.


Subject(s)
Bacteria/metabolism , Microbiota , Plant Exudates/metabolism , Plant Roots/metabolism , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Plant Roots/microbiology , Plants/metabolism , Plants/microbiology , Rhizosphere , Soil/chemistry
13.
Mol Plant Microbe Interact ; 32(8): 1013-1025, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30811315

ABSTRACT

Biofilms formed by bacteria on plant roots play an important role in maintaining an optimal rhizosphere environment that supports plant growth and fitness. Bacillus subtilis is a potent plant growth promoter, forming biofilms that play a key role in protecting the host from fungal and bacterial infections. In this work, we demonstrate that the development of B. subtilis biofilms is antagonized by specific indole derivatives that accumulate during symbiotic interactions with plant hosts. Indole derivatives are more potent signals when the plant polysaccharide xylan serves as a carbon source, a mechanism to sustain beneficial biofilms at a biomass that can be supported by the plant. Moreover, B. subtilis biofilms formed by mutants resistant to indole derivatives become deleterious to the plants due to their capacity to consume and recycle plant polysaccharides. These results demonstrate how a dynamic metabolite-based dialogue can promote homeostasis between plant hosts and their beneficial biofilm communities.


Subject(s)
Bacillus subtilis , Biofilms , Indoles , Plants , Bacillus subtilis/physiology , Bacterial Proteins/genetics , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/physiology , Indoles/chemistry , Indoles/pharmacology , Plant Roots/microbiology , Plants/microbiology
14.
Bio Protoc ; 9(8): e3211, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-33655005

ABSTRACT

Soil organisms are diverse taxonomically and functionally. This ecosystem experiences highly complex networks of interactions, but may also present functionally independent entities. Plant roots, a metabolically active hotspot in the soil, take an essential part in shaping the rhizosphere. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited due to methodological intricacy. In this study, we developed a novel microfluidics-based device enabling direct imaging of root-bacteria interactions in real time.

15.
Nat Biotechnol ; 36(10): 962-970, 2018 11.
Article in English | MEDLINE | ID: mdl-30222169

ABSTRACT

Spatially resolved single-cell RNA sequencing (scRNAseq) is a powerful approach for inferring connections between a cell's identity and its position in a tissue. We recently combined scRNAseq with spatially mapped landmark genes to infer the expression zonation of hepatocytes. However, determining zonation of small cells with low mRNA content, or without highly expressed landmark genes, remains challenging. Here we used paired-cell sequencing, in which mRNA from pairs of attached mouse cells were sequenced and gene expression from one cell type was used to infer the pairs' tissue coordinates. We applied this method to pairs of hepatocytes and liver endothelial cells (LECs). Using the spatial information from hepatocytes, we reconstructed LEC zonation and extracted a landmark gene panel that we used to spatially map LEC scRNAseq data. Our approach revealed the expression of both Wnt ligands and the Dkk3 Wnt antagonist in distinct pericentral LEC sub-populations. This approach can be used to reconstruct spatial expression maps of non-parenchymal cells in other tissues.


Subject(s)
Endothelial Cells/metabolism , Gene Expression Regulation/physiology , Liver/cytology , Animals , Base Sequence , Hepatocytes/physiology , Mice , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Wnt Signaling Pathway
16.
Cell Stem Cell ; 23(4): 572-585.e7, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30174297

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) tightly couple maintenance of the bone marrow (BM) reservoir, including undifferentiated long-term repopulating hematopoietic stem cells (LT-HSCs), with intensive daily production of mature leukocytes and blood replenishment. We found two daily peaks of BM HSPC activity that are initiated by onset of light and darkness providing this coupling. Both peaks follow transient elevation of BM norepinephrine and TNF secretion, which temporarily increase HSPC reactive oxygen species (ROS) levels. Light-induced norepinephrine and TNF secretion augments HSPC differentiation and increases vascular permeability to replenish the blood. In contrast, darkness-induced TNF increases melatonin secretion to drive renewal of HSPCs and LT-HSC potential through modulating surface CD150 and c-Kit expression, increasing COX-2/αSMA+ macrophages, diminishing vascular permeability, and reducing HSPC ROS levels. These findings reveal that light- and darkness-induced daily bursts of norepinephrine, TNF, and melatonin within the BM are essential for synchronized mature blood cell production and HSPC pool repopulation.


Subject(s)
Cell Differentiation/radiation effects , Darkness , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/radiation effects , Light , Animals , Cells, Cultured , Epigenesis, Genetic/genetics , Hematopoietic Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Proc Natl Acad Sci U S A ; 114(17): 4549-4554, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28348235

ABSTRACT

Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled Bacillus subtilis as it colonizes the root of Arabidopsis thaliana within the TRIS device. Our results show a distinct chemotactic behavior of B. subtilis toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of Escherichia coli cells from the root surface after B. subtilis colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research.


Subject(s)
Arabidopsis/microbiology , Bacillus subtilis/physiology , Microfluidics/instrumentation , Microscopy, Confocal/instrumentation , Plant Roots/microbiology , Microfluidics/methods , Microscopy, Confocal/methods , Plant Roots/physiology , Symbiosis
19.
Plant J ; 90(4): 788-807, 2017 May.
Article in English | MEDLINE | ID: mdl-28333395

ABSTRACT

Soil communities are diverse taxonomically and functionally. This ecosystem experiences highly complex networks of interactions, but may also present functionally independent entities. Plant roots, a metabolically active hotspot in the soil, take an essential part in below-ground interactions. While plants are known to release an extremely high portion of the fixated carbon to the soil, less information is known about the composition and role of C-containing compounds in the rhizosphere, in particular those involved in chemical communication. Specialized metabolites (or secondary metabolites) produced by plants and their associated microbes have a critical role in various biological activities that modulate the behavior of neighboring organisms. Thus, elucidating the chemical composition and function of specialized metabolites in the rhizosphere is a key element in understanding interactions in this below-ground environment. Here, we review key classes of specialized metabolites that occur as mostly non-volatile compounds in root exudates or are emitted as volatile organic compounds (VOCs). The role of these metabolites in below-ground interactions and response to nutrient deficiency, as well as their tissue and cell type-specific biosynthesis and release are discussed in detail.


Subject(s)
Plant Roots/metabolism , Plant Roots/microbiology , Rhizosphere , Ecosystem , Plants/metabolism , Plants/microbiology , Volatile Organic Compounds/metabolism
20.
Nat Plants ; 3: 16205, 2016 Dec 22.
Article in English | MEDLINE | ID: mdl-28005066

ABSTRACT

The amount of cholesterol made by many plants is not negligible. Whereas cholesterogenesis in animals was elucidated decades ago, the plant pathway has remained enigmatic. Among other roles, cholesterol is a key precursor for thousands of bioactive plant metabolites, including the well-known Solanum steroidal glycoalkaloids. Integrating tomato transcript and protein co-expression data revealed candidate genes putatively associated with cholesterol biosynthesis. A combination of functional assays including gene silencing, examination of recombinant enzyme activity and yeast mutant complementation suggests the cholesterol pathway comprises 12 enzymes acting in 10 steps. It appears that half of the cholesterogenesis-specific enzymes evolved through gene duplication and divergence from phytosterol biosynthetic enzymes, whereas others act reciprocally in both cholesterol and phytosterol metabolism. Our findings provide a unique example of nature's capacity to exploit existing protein folds and catalytic machineries from primary metabolism to assemble a new, multi-step metabolic pathway. Finally, the engineering of a 'high-cholesterol' model plant underscores the future value of our gene toolbox to produce high-value steroidal compounds via synthetic biology.

SELECTION OF CITATIONS
SEARCH DETAIL
...