Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 161(7): 1516-26, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26091036

ABSTRACT

The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


Subject(s)
Ebolavirus/genetics , Ebolavirus/isolation & purification , Genome, Viral , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Mutation , Biological Evolution , Disease Outbreaks , Ebolavirus/classification , Hemorrhagic Fever, Ebola/transmission , Humans , Sierra Leone/epidemiology , Specimen Handling
2.
PLoS Curr ; 72015 Apr 20.
Article in English | MEDLINE | ID: mdl-25969797

ABSTRACT

Since Ebola Virus Disease (EVD) was first identified in 1976 in what is now the Democratic Republic of Congo, and despite the numerous outbreaks recorded to date, rarely has an epidemic origin been identified. Indeed, among the twenty-one most documented EVD outbreaks in Africa, an index case has been identified four times, and hypothesized in only two other instances. The initial steps of emergence and spread of a virus are critical in the development of a potential outbreak and need to be thoroughly dissected and understood in order to improve on preventative strategies. In the current West African outbreak of EVD, a unique index case has been identified, pinpointing the geographical origin of the epidemic in Guinea. Herein, we provide an accounting of events that serve as the footprint of EVD emergence in Sierra Leone and a road map for risk mitigation fueled by lessons learned.

3.
N Engl J Med ; 371(22): 2092-100, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25353969

ABSTRACT

BACKGROUND: Limited clinical and laboratory data are available on patients with Ebola virus disease (EVD). The Kenema Government Hospital in Sierra Leone, which had an existing infrastructure for research regarding viral hemorrhagic fever, has received and cared for patients with EVD since the beginning of the outbreak in Sierra Leone in May 2014. METHODS: We reviewed available epidemiologic, clinical, and laboratory records of patients in whom EVD was diagnosed between May 25 and June 18, 2014. We used quantitative reverse-transcriptase-polymerase-chain-reaction assays to assess the load of Ebola virus (EBOV, Zaire species) in a subgroup of patients. RESULTS: Of 106 patients in whom EVD was diagnosed, 87 had a known outcome, and 44 had detailed clinical information available. The incubation period was estimated to be 6 to 12 days, and the case fatality rate was 74%. Common findings at presentation included fever (in 89% of the patients), headache (in 80%), weakness (in 66%), dizziness (in 60%), diarrhea (in 51%), abdominal pain (in 40%), and vomiting (in 34%). Clinical and laboratory factors at presentation that were associated with a fatal outcome included fever, weakness, dizziness, diarrhea, and elevated levels of blood urea nitrogen, aspartate aminotransferase, and creatinine. Exploratory analyses indicated that patients under the age of 21 years had a lower case fatality rate than those over the age of 45 years (57% vs. 94%, P=0.03), and patients presenting with fewer than 100,000 EBOV copies per milliliter had a lower case fatality rate than those with 10 million EBOV copies per milliliter or more (33% vs. 94%, P=0.003). Bleeding occurred in only 1 patient. CONCLUSIONS: The incubation period and case fatality rate among patients with EVD in Sierra Leone are similar to those observed elsewhere in the 2014 outbreak and in previous outbreaks. Although bleeding was an infrequent finding, diarrhea and other gastrointestinal manifestations were common. (Funded by the National Institutes of Health and others.).


Subject(s)
Ebolavirus/genetics , Epidemics , Hemorrhagic Fever, Ebola/epidemiology , Abdominal Pain , Adult , Animals , Diarrhea , Ebolavirus/isolation & purification , Female , Fever , Hemorrhagic Fever, Ebola/complications , Hemorrhagic Fever, Ebola/therapy , Hemorrhagic Fever, Ebola/virology , Humans , Male , Middle Aged , Mortality , Reverse Transcriptase Polymerase Chain Reaction , Sierra Leone/epidemiology , Viral Load , Vomiting
4.
Science ; 345(6202): 1369-72, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25214632

ABSTRACT

In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000× coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic. This West African variant likely diverged from central African lineages around 2004, crossed from Guinea to Sierra Leone in May 2014, and has exhibited sustained human-to-human transmission subsequently, with no evidence of additional zoonotic sources. Because many of the mutations alter protein sequences and other biologically meaningful targets, they should be monitored for impact on diagnostics, vaccines, and therapies critical to outbreak response.


Subject(s)
Disease Outbreaks , Ebolavirus/genetics , Epidemiological Monitoring , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/virology , Base Sequence , Ebolavirus/isolation & purification , Genetic Variation , Genome, Viral/genetics , Genomics/methods , Hemorrhagic Fever, Ebola/epidemiology , Humans , Mutation , Sequence Analysis, DNA , Sierra Leone/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...