Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Ann Appl Stat ; 17(3): 1958-1983, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37830084

ABSTRACT

Recent advances in biological research have seen the emergence of high-throughput technologies with numerous applications that allow the study of biological mechanisms at an unprecedented depth and scale. A large amount of genomic data is now distributed through consortia like The Cancer Genome Atlas (TCGA), where specific types of biological information on specific type of tissue or cell are available. In cancer research, the challenge is now to perform integrative analyses of high-dimensional multi-omic data with the goal to better understand genomic processes that correlate with cancer outcomes, e.g. elucidate gene networks that discriminate a specific cancer subgroups (cancer sub-typing) or discovering gene networks that overlap across different cancer types (pan-cancer studies). In this paper, we propose a novel mixed graphical model approach to analyze multi-omic data of different types (continuous, discrete and count) and perform model selection by extending the Birth-Death MCMC (BDMCMC) algorithm initially proposed by Stephens (2000) and later developed by Mohammadi and Wit (2015). We compare the performance of our method to the LASSO method and the standard BDMCMC method using simulations and find that our method is superior in terms of both computational efficiency and the accuracy of the model selection results. Finally, an application to the TCGA breast cancer data shows that integrating genomic information at different levels (mutation and expression data) leads to better subtyping of breast cancers.

2.
Ann Appl Stat ; 10(2): 786-811, 2016 Jun.
Article in English | MEDLINE | ID: mdl-33907591

ABSTRACT

The analysis of GWAS data has long been restricted to simple models that cannot fully capture the genetic architecture of complex human diseases. As a shift from standard approaches, we propose here a general statistical framework for multi-SNP analysis of GWAS data based on a Bayesian graphical model. Our goal is to develop a general approach applicable to a wide range of genetic association problems, including GWAS and fine-mapping studies, and, more specifically, be able to: (1) Assess the joint effect of multiple SNPs that can be linked or unlinked and interact or not; (2) Explore the multi-SNP model space efficiently using the Mode Oriented Stochastic Search (MOSS) algorithm and determine the best models. We illustrate our new methodology with an application to the CGEM breast cancer GWAS data. Our algorithm selected several SNPs embedded in multi-locus models with high posterior probabilities. Most of the SNPs selected have a biological relevance. Interestingly, several of them have never been detected in standard single-SNP analyses. Finally, our approach has been implemented in the open source R package genMOSS.

SELECTION OF CITATIONS
SEARCH DETAIL
...