Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 293(8): 2877-2887, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29326164

ABSTRACT

The transporters for glutamine and essential amino acids, ASCT2 (solute carrier family 1 member 5, SLC1A5) and LAT1 (solute carrier family 7 member 5, SLC7A5), respectively, are overexpressed in aggressive cancers and have been identified as cancer-promoting targets. Moreover, previous work has suggested that glutamine influx via ASCT2 triggers essential amino acids entry via the LAT1 exchanger, thus activating mechanistic target of rapamycin complex 1 (mTORC1) and stimulating growth. Here, to further investigate whether these two transporters are functionally coupled, we compared the respective knockout (KO) of either LAT1 or ASCT2 in colon (LS174T) and lung (A549) adenocarcinoma cell lines. Although ASCT2KO significantly reduced glutamine import (>60% reduction), no impact on leucine uptake was observed in both cell lines. Although an in vitro growth-reduction phenotype was observed in A549-ASCT2KO cells only, we found that genetic disruption of ASCT2 strongly decreased tumor growth in both cell lines. However, in sharp contrast to LAT1KO cells, ASCT2KO cells displayed no amino acid (AA) stress response (GCN2/EIF2a/ATF4) or altered mTORC1 activity (S6K1/S6). We therefore conclude that ASCT2KO reduces tumor growth by limiting AA import, but that this effect is independent of LAT1 activity. These data were further supported by in vitro cell proliferation experiments performed in the absence of glutamine. Together these results confirm and extend ASCT2's pro-tumoral role and indicate that the proposed functional coupling model of ASCT2 and LAT1 is not universal across different cancer types.


Subject(s)
Adenocarcinoma/metabolism , Amino Acid Transport System ASC/metabolism , Colonic Neoplasms/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Lung Neoplasms/metabolism , Minor Histocompatibility Antigens/metabolism , Neoplasm Proteins/metabolism , Absorption, Physiological/drug effects , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Amino Acid Transport System ASC/antagonists & inhibitors , Amino Acid Transport System ASC/genetics , Animals , Antineoplastic Agents/pharmacology , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation , Clone Cells , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Female , Gene Deletion , Gene Knockout Techniques , Glutamine/metabolism , Humans , Large Neutral Amino Acid-Transporter 1/chemistry , Large Neutral Amino Acid-Transporter 1/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mechanistic Target of Rapamycin Complex 1/agonists , Mechanistic Target of Rapamycin Complex 1/metabolism , Membrane Transport Modulators/pharmacology , Mice, Nude , Minor Histocompatibility Antigens/genetics , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Transplantation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
2.
Sci Rep ; 6: 33998, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27671446

ABSTRACT

Legionella pneumophila is, by far, the species most frequently associated with Legionnaires' disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization. In this study, we used an original experimental set-up that enables the generation of aerosol particles containing L. pneumophila under various conditions. Using flow cytometry in combination with qPCR and culture, we determined (i) the size of the aerosols and (ii) the concentration of viable Legionella forms that may reach the thoracic region. We determined that the 0.26-2.5 µm aerosol size range represents 7% of initial bacterial suspension. Among the viable forms, 0.7% of initial viable bacterial suspension may reach the pulmonary alveoli. In conclusion, these deposition profiles can be used to standardize the size of inoculum injected in any type of respiratory tract model to obtain new insights into the dose response for LD.

3.
Cancer Res ; 76(15): 4481-92, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27302165

ABSTRACT

The CD98/LAT1 complex is overexpressed in aggressive human cancers and is thereby described as a potential therapeutic target. This complex promotes tumorigenesis with CD98 (4F2hc) engaging ß-integrin signaling while LAT1 (SLC7A5) imports essential amino acids (EAA) and promotes mTORC1 activity. However, it is unclear as to which member of the heterodimer carries the most prevalent protumoral action. To answer this question, we explored the tumoral potential of each member by gene disruption of CD98, LAT1, or both and by inhibition of LAT1 with the selective inhibitor (JPH203) in six human cancer cell lines from colon, lung, and kidney. Each knockout respectively ablated 90% (CD98 KO: ) and 100% (LAT1 KO: ) of Na(+)-independent leucine transport activity. LAT1 KO: or JPH203-treated cells presented an amino acid stress response with ATF4, GCN2 activation, mTORC1 inhibition, and severe in vitro and in vivo tumor growth arrest. We show that this severe growth phenotype is independent of the level of expression of CD98 in the six tumor cell lines. Surprisingly, CD98 KO: cells with only 10% EAA transport activity displayed a normal growth phenotype, with mTORC1 activity and tumor growth rate undistinguishable from wild-type cells. However, CD98 KO: cells became extremely sensitive to inhibition or genetic disruption of LAT1 (CD98 KO: /LAT1 KO: ). This finding demonstrates that the tumoral potential of CD98 KO: cells is due to residual LAT1 transport activity. Therefore, these findings clearly establish that LAT1 transport activity is the key growth-limiting step of the heterodimer and advocate the pharmacology development of LAT1 transporter inhibitors as a very promising anticancer target. Cancer Res; 76(15); 4481-92. ©2016 AACR.


Subject(s)
Multiprotein Complexes/genetics , TOR Serine-Threonine Kinases/genetics , Amino Acids, Essential , Animals , Biological Transport , Cell Line, Tumor , Female , Fusion Regulatory Protein-1 , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Nude , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...