Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 184: 108444, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38281449

ABSTRACT

There is a growing concern within the medical community about the potential burden of microplastics on human organs and tissues. In this study, we investigated by microRaman spectroscopy the presence of microplastics in human kidneys and urine. Moreover, an open-access software was developed and validated for the project, which enabled the comparison between the investigated spectra and a self-created spectral database, thus enhancing the ability to characterize polymers and pigments in biological matrices. Healthy portions of ten kidneys obtained from nephrectomies, as well as ten urine samples from healthy donors were analyzed: 26 particles in both kidney and urine samples were identified, with sizes ranging from 3 to 13 µm in urine and from 1 to 29 µm in kidneys. The most frequently determined polymers are polyethylene and polystyrene, while the most common pigments are hematite and Cu-phthalocyanine. This preclinical study proves the presence of microplastics in renal tissues and confirms their presence in urine, providing the first evidence of kidney microplastics deposition in humans.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Polymers , Spectrum Analysis , Kidney/chemistry
2.
Phys Chem Chem Phys ; 24(38): 23622-23633, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36134477

ABSTRACT

The structural, microstructural, Raman and ionic conductivity properties of (Gd,Sm)-doped ceria were studied and compared to the ones of similar ceria systems with the aim of deepening the comprehension of the correlations between defect chemistry and movement of oxygen vacancies in such materials, which are ideal candidates as electrolytes in solid oxide cells. The system was chosen as it combines the advantages of using the most effective doping ions for ceria, namely Sm3+ and Gd3+, and the expected positive effects of multiple doping. The main effect of double doping on the structure is the enlargement of the compositional region where ionic conductivity takes place, due to the entrance of the smaller doping ions into defect clusters, mainly trimers and dimers (RE ≡ rare earth). On the other hand, the formation of such clusters also affects ionic conductivity, as it causes the occurrence of a double activation energy with a temperature threshold located at ∼770 K. The dissociation of trimers above this temperature induces the appearance of a high temperature activation energy which is lower than the one observed in singly-doped systems, such as Sm- and Nd-doped ceria, showing the unique value of this parameter.

3.
Inorg Chem ; 60(10): 7306-7314, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33929819

ABSTRACT

Defect aggregates in doped ceria play a crucial role in blocking the movement of oxygen vacancies and hence in reducing ionic conductivity. Nevertheless, evaluation of their amount and the correlation between domain size and transport properties is still an open issue. Data derived from a high-pressure X-ray diffraction investigation performed on the Ce1-x(Nd0.74Tm0.26)xO2-x/2 system are employed to develop a novel approach aimed at evaluating the defect aggregate content; the results are critically discussed in comparison to the ones previously obtained from Sm- and Lu-doped ceria. Defect clusters are present even at the lowest considered x value, and their content increases with increasing x and decreasing rare earth ion (RE3+) size; their amount, distribution, and spatial correlation can be interpreted as a complex interplay between the defects' binding energy, nucleation rate, and growth rate. The synoptic analysis of data derived from all of the considered systems also suggests that the detection limit of the defects by X-ray diffraction is correlated to the defect size rather than to their amount, and that the vacancies' flow through the lattice is hindered by defects irrespective of their size and association degree.

SELECTION OF CITATIONS
SEARCH DETAIL
...