Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3774, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710680

ABSTRACT

Structural distortions and imperfections are a crucial aspect of materials science, on the macroscopic scale providing strength, but also enhancing corrosion and reducing electrical and thermal conductivity. At the nanometre scale, multi-atom imperfections, such as atomic chains and crystalline domain walls have conversely been proposed as a route to topological superconductivity, whose most prominent characteristic is the emergence of Majorana Fermions that can be used for error-free quantum computing. Here, we shed more light on the nature of purported domain walls in Fe(Se,Te) that may host 1D dispersing Majorana modes. We show that the displacement shift of the atomic lattice at these line-defects results from sub-surface impurities that warp the topmost layer(s). Using the electric field between the tip and sample, we manage to reposition the sub-surface impurities, directly visualizing the displacement shift and the underlying defect-free lattice. These results, combined with observations of a completely different type of 1D defect where superconductivity remains fully gapped, highlight the topologically trivial nature of 1D defects in Fe(Se,Te).

2.
Phys Rev Lett ; 128(24): 247001, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35776485

ABSTRACT

The pair breaking potential of individual magnetic impurities in s-wave superconductors generates localized states inside the superconducting gap commonly referred to as Yu-Shiba-Rusinov (YSR) states whose isolated nature makes them promising building blocks for artificial structures that may host Majorana fermions. One of the challenges in this endeavor is to understand their intrinsic lifetime, ℏ/Λ, which is expected to be limited by the inelastic coupling with the continuum thus leading to decoherence. Here we use shot-noise scanning tunneling microscopy to reveal that electron tunneling into superconducting 2H-NbSe_{2} mediated by YSR states is not Poissonian, but ordered as a function of time, as evidenced by a reduction of the noise. Moreover, our data show the concomitant transfer of charges e and 2e, indicating that incoherent single particle and coherent Andreev processes operate simultaneously. From the quantitative agreement between experiment and theory we obtain Λ=1 µeV≪k_{B}T demonstrating that shot noise can probe energy scales and timescales inaccessible by conventional spectroscopy whose resolution is thermally limited.

3.
Science ; 367(6473): 68-71, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31896712

ABSTRACT

Single-atom manipulation within doped correlated electron systems could help disentangle the influence of dopants, structural defects, and crystallographic characteristics on local electronic states. Unfortunately, the high diffusion barrier in these materials prevents conventional manipulation techniques. Here, we demonstrate the possibility to reversibly manipulate select sites in the optimally doped high-temperature superconductor Bi2Sr2CaCu2O8+x using the local electric field of the tip of a scanning tunneling microscope. We show that upon shifting individual Bi atoms at the surface, the spectral gap associated with superconductivity is seen to reversibly change by as much as 15 milli-electron volts (on average ~5% of the total gap size). Our toy model, which captures all observed characteristics, suggests that the electric field induces lateral movement of local pairing potentials in the CuO2 plane.

4.
Nat Commun ; 10(1): 1618, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30944326

ABSTRACT

The original version of this Article contained an error in the right-hand y-axis of Fig. 2c, which incorrectly read 'S/2e (pA)'. The correct version states 'nA' in place of 'pA'. This has been corrected in both the PDF and HTML versions of the Article.

5.
Nat Commun ; 10(1): 544, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30710086

ABSTRACT

Dopants and impurities are crucial in shaping the ground state of host materials: semiconducting technology is based on their ability to donate or trap electrons, and they can even be used to transform insulators into high temperature superconductors. Due to limited time resolution, most atomic-scale studies of the latter materials focussed on the effect of dopants on the electronic properties averaged over time. Here, by using atomic-scale current-noise measurements in optimally doped Bi2Sr2CaCu2O8+x, we visualize sub-nanometre sized objects where the tunnelling current-noise is enhanced by at least an order of magnitude. We show that these objects are previously undetected oxygen dopants whose ionization and local environment leads to unconventional charge dynamics resulting in correlated tunnelling events. The ionization of these dopants opens up new routes to dynamically control doping at the atomic scale, enabling the direct visualization of local charging on e.g. high-Tc superconductivity.

6.
Rev Sci Instrum ; 89(9): 093708, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278734

ABSTRACT

By implementing dedicated cryogenic circuitry operating in the MHz regime, we have developed a scanning tunneling microscope (STM) capable of conventional, low frequency (<10 kHz), microscopy as well spectroscopy and shot-noise detection at 1 MHz. After calibrating our AC circuit on a gold surface, we illustrate our capability to detect shot-noise at the atomic scale and at low currents (<1 nA) by simultaneously measuring the atomically resolved differential conductance and shot-noise on the high temperature superconductor Bi2Sr2CaCu2O8+x . We further show our direct sensitivity to the temperature of the tunneling electrons at low voltages. Our MHz circuitry opens up the possibility to study charge and correlation effects at the atomic scale in all materials accessible to STM.

7.
Nat Commun ; 9(1): 598, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426840

ABSTRACT

Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.

SELECTION OF CITATIONS
SEARCH DETAIL
...