Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 60(24): 13264-13270, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33651910

ABSTRACT

Rhodium-electrocatalyzed arene C-H oxygenation by weakly O-coordinating amides and ketones have been established by bimetallic electrocatalysis. Likewise, diverse dihydrooxazinones were selectively accessed by the judicious choice of current, enabling twofold C-H functionalization. Detailed mechanistic studies by experiment, mass spectroscopy and cyclovoltammetric analysis provided support for an unprecedented electrooxidation-induced C-H activation by a bimetallic rhodium catalysis manifold.

2.
Angew Chem Int Ed Engl ; 59(8): 3184-3189, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31777143

ABSTRACT

The catalytic generation of hypervalent iodine(III) reagents by anodic electrooxidation was orchestrated towards an unprecedented electrocatalytic C-H oxygenation of weakly coordinating aromatic amides and ketones. Thus, catalytic quantities of iodoarenes in concert with catalytic amounts of ruthenium(II) complexes set the stage for versatile C-H activations with ample scope and high functional group tolerance. Detailed mechanistic studies by experiment and computation substantiate the role of the iodoarene as the electrochemically relevant species towards C-H oxygenations with electricity as a sustainable oxidant and molecular hydrogen as the sole by-product. para-Selective C-H oxygenations likewise proved viable in the absence of directing groups.

3.
Chemistry ; 25(71): 16382-16389, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31658385

ABSTRACT

Despite major advances, organometallic C-H transformations are dominated by precious 5d and 4d transition metals, such as iridium, palladium and rhodium. In contrast, the unique potential of less toxic Earth-abundant 3d metals has been underexplored. While iron is the most naturally abundant transition metal, its use in oxidative, organometallic C-H activation has faced major limitations due to the need for superstoichiometric amounts of corrosive, cost-intensive DCIB as the sacrificial oxidant. To fully address these restrictions, we describe herein the unprecedented merger of electrosynthesis with iron-catalyzed C-H activation through oxidation-induced reductive elimination. Thus, ferra- and manganaelectro-catalyzed C-H arylations were accomplished at mild reaction temperatures with ample scope by the action of sustainable iron catalysts, employing electricity as a benign oxidant.

4.
Angew Chem Int Ed Engl ; 57(20): 5818-5822, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29603565

ABSTRACT

Electrocatalysis has been identified as a powerful strategy for organometallic catalysis, and yet electrocatalytic C-H activation is restricted to strongly N-coordinating directing groups. The first example of electrocatalytic C-H activation by weak O-coordination is presented, in which a versatile ruthenium(II) carboxylate catalyst enables electrooxidative C-H/O-H functionalization for alkyne annulations in the absence of metal oxidants; thereby exploiting sustainable electricity as the sole oxidant. Mechanistic insights provide strong support for a facile organometallic C-H ruthenation and an effective electrochemical reoxidation of the key ruthenium(0) intermediate.

5.
Angew Chem Int Ed Engl ; 57(9): 2383-2387, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29316187

ABSTRACT

Electrochemistry enabled C-H/N-H functionalizations at room temperature by external oxidant-free cobalt catalysis. Thus, the sustainable cobalt electrocatalysis manifold proceeds with excellent levels of chemoselectivity and positional selectivity, and with ample scope, thus allowing electrochemical C-H activation under exceedingly mild reaction conditions at room temperature in water.

6.
Chemistry ; 22(42): 14856-14859, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27556882

ABSTRACT

Expedient hydroarylations of C=Het bonds (Het=heteroatom) were accomplished by user-friendly organometallic C-H activation in a positional-selective manner. The broadly applicable C-H functionalization platform enabled the step-economical transformation of aldehydes, ketones, and imines under additive-free reaction conditions. In contrast to palladium, rhodium, ruthenium, rhenium, iridium, nickel, and cobalt catalysis, solely manganese(I) complexes outcompeted the innate substrate control, clearly highlighting the unique power of manganese(I) C-H activation catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...