Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Mol Sci ; 24(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38069080

ABSTRACT

Metabolic syndrome (MS) is a risk factor for breast cancer (BC) that increases its aggressiveness and metastasis. The prevalence of MS is higher in triple-negative breast cancer (TNBC), which is the molecular subtype with the worst prognosis. The molecular mechanisms underlying this association have not been fully elucidated. MiRNAs are small, non-coding RNAs that regulate gene expression. Aberrant expression of miRNAs in both tissues and fluids are linked to several pathologies. The aim of this work was to identify circulating miRNAs in patients with alterations associated with MS (AAMS) that also impact on BC. Using microarray technology, we detected 23 miRNAs altered in the plasma of women with AAMS that modulate processes linked to cancer. We found that let-7b-5p and miR-28-3p were decreased in plasma from patients with AAMS and also in BC tumors, while miR-877-5p was increased. Interestingly, miR-877-5p expression was associated with lower patient survival, and its expression was higher in PAM50 basal-like BC tumors compared to the other molecular subtypes. Analyses from public databases revealed that miR-877-5p was also increased in plasma from BC patients compared to plasma from healthy donors. We identified IGF2 and TIMP3 as validated target genes of miR-877-5p whose expression was decreased in BC tissue and moreover, was negatively correlated with the levels of this miRNA in the tumors. Finally, a miRNA inhibitor against miR-877-5p diminished viability and tumor growth of the TNBC model 4T1. These results reveal that miR-877-5p inhibition could be a therapeutic option for the treatment of TNBC. Further studies are needed to investigate the role of this miRNA in TNBC progression.


Subject(s)
Circulating MicroRNA , Metabolic Syndrome , MicroRNAs , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/pathology , Metabolic Syndrome/genetics , MicroRNAs/metabolism , Circulating MicroRNA/therapeutic use , Gene Expression Regulation, Neoplastic
2.
Front Oncol ; 12: 997457, 2022.
Article in English | MEDLINE | ID: mdl-36387263

ABSTRACT

The incidence and mortality of Prostate Cancer (PCa) worldwide correlate with age and bad dietary habits. Previously, we investigated the mRNA/miRNA role on PCa development and progression using high fat diet (HFD) fed mice. Here our main goal was to investigate the effect of HFD on the expression of PCa-related miRNAs and their relevance in PCa patients. We identified 6 up- and 18 down-regulated miRNAs in TRAMP-C1 mice prostate tumors under HFD conditions using miRNA microarrays. Three down-regulated miRNAs: mmu-miR-133a-3p, -1a-3p and -29c-3p were validated in TRAMP-C1 mice prostate tumor by stem-loop RT-qPCR. Hsa-miR-133a-3p/1-3p expression levels were significantly decreased in PCa compared to normal tissues while hsa-miR-133a-3p was found to be further decreased in metastatic prostate cancer tumors compared to non-metastatic PCa. We examined the promoter region of hsa-miR-133a-3p/1-3p genes and compared methylation at these loci with mature miRNA expression. We found that hsa-miR-1-2/miR-133a-1 cluster promoter hypermethylation decreased hsa-miR-133a-3p/1-3p expression in PCa. GOLPH3 and JUP, two hsa-miR-133a-3p and miR-1-3p predicted target genes, were up-regulated in PCa. ROC analysis showed that the combination of hsa-miR-133a-3p, miR-1-3p, GOLPH3 and JUP is a promising panel biomarker to distinguish between PCa and normal adjacent tissue (NAT). These results link PCa aggressiveness to the attenuation of hsa-miR-133a-3p and miR-1-3p expression by promoter hypermethylation. Hsa-miR-133a-3p and miR-1-3p down-regulation may enhance PCa aggressiveness in part by targeting GOLPH3 and JUP.

3.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681793

ABSTRACT

Breast cancer (BCa) is the leading cause of death by cancer in women worldwide. This disease is mainly stratified in four subtypes according to the presence of specific receptors, which is important for BCa aggressiveness, progression and prognosis. MicroRNAs (miRNAs) are small non-coding RNAs that have the capability to modulate several genes. Our aim was to identify a miRNA signature deregulated in preclinical and clinical BCa models for potential biomarker discovery that would be useful for BCa diagnosis and/or prognosis. We identified hsa-miR-21-5p and miR-106b-5p as up-regulated and hsa-miR-205-5p and miR-143-3p as down-regulated in BCa compared to normal breast or normal adjacent (NAT) tissues. We established 51 shared target genes between hsa-miR-21-5p and miR-106b-5p, which negatively correlated with the miRNA expression. Furthermore, we assessed the pathways in which these genes were involved and selected 12 that were associated with cancer and metabolism. Additionally, GAB1, GNG12, HBP1, MEF2A, PAFAH1B1, PPP1R3B, RPS6KA3 and SESN1 were downregulated in BCa compared to NAT. Interestingly, hsa-miR-106b-5p was up-regulated, while GAB1, GNG12, HBP1 and SESN1 were downregulated in aggressive subtypes. Finally, patients with high levels of hsa-miR-106b-5 and low levels of the abovementioned genes had worse relapse free survival and worse overall survival, except for GAB1.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms , MicroRNAs/physiology , Animals , Biomarkers, Tumor/physiology , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Neoplasm Invasiveness , Prognosis , Tumor Cells, Cultured
4.
Am J Cancer Res ; 11(6): 2802-2820, 2021.
Article in English | MEDLINE | ID: mdl-34249429

ABSTRACT

Prostate cancer (PCa) is the most commonly diagnosed male malignancy worldwide. Early diagnosis and metastases detection are crucial features to diminish patient mortality. High fat diet (HFD) and metabolic syndrome increase PCa risk and aggressiveness. Our goal was to identify miRNAs-based biomarkers for PCa diagnosis and prognosis associated with HFD. Mice chronically fed with a HFD or control diet (CD) were subcutaneously inoculated with androgen insensitive PC3 cells. Xenografts from HFD-fed mice showed increased expression of 7 miRNAs that we named "candidates" compared to CD-fed mice. These miRNAs modulate specific metabolic and cancer related pathways. Using bioinformatic tools and human datasets we found that hsa-miR-19b-3p and miR-101-3p showed more than 1,100 validated targets involved in proteoglycans in cancer and fatty acid biosynthesis. These miRNAs were significantly increased in the bloodstream of PCa patients compared to non-PCa volunteers, and in prostate tumors compared to normal adjacent tissues (NAT). Interestingly, both miRNAs were also increased in tumors of metastatic patients compared to tumors of non-metastatic patients. Further receiver-operating characteristic (ROC) analysis determined that hsa-miR-19b-3p and hsa-miR-101-3p in serum showed poor predictive power to discriminate PCa from non-PCa patients. Hsa-miR-19b-3p showed the best score to discriminate between tumor and NAT, while hsa-miR-101-3p was useful to differentiate between metastatic and non-metastatic PCa patients. Hsa-miR-101-3p was increased in exosomes isolated from blood of PCa patients. Although more detailed functional exploration and validation of the molecular mechanisms are required, we identified hsa-miR-19b-3p and hsa-miR-101-3p with high potential for PCa diagnosis and prognosis.

5.
Mol Oncol ; 14(11): 2868-2883, 2020 11.
Article in English | MEDLINE | ID: mdl-32875710

ABSTRACT

Prostate cancer (PCa) remains an important public health concern in Western countries. Metabolic syndrome (MeS) is a cluster of pathophysiological disorders with increasing prevalence in the general population that is a risk factor for PCa. Several studies have determined that a crosstalk between white adipose tissue (WAT) and solid tumors favors cancer aggressiveness. In this work, our main goal was to investigate the interaction between WAT and PCa cells through microRNAs (miRNAs), in MeS mice. We developed a MeS-like disease model using C57BL/6J mice chronically fed with high-fat diet (HFD) that were inoculated with TRAMP-C1 PCa cells. A group of five miRNAs (mmu-miR-221-3p, 27a-3p, 34a-5p, 138-5p, and 146a-5p) were increased in gonadal WAT (gWAT), tumors, and plasma of MeS mice compared to control animals. Three of these five miRNAs were detected in the media from gWAT and TRAMP-C1 cell cocultures, and significantly increased in MeS context. More importantly, hsa-miR-221-3p, 146a-5p, and 27a-3p were increased in bloodstream of PCa patients compared to healthy donors. Using miRNA microarrays, we found that 121 miRNAs were differentially released to the coculture media between HFD-gWAT and tumor cells compared to control diet-gWAT and tumor cells. Target genes for the 66 most deregulated miRNAs were involved in common pathways, mainly related to fatty acid metabolism, ER protein processing, amino acid degradation, PI3K AKT signaling, and PCa. Our findings show for the first time a signature of five miRNAs as important players involved in the interaction between WAT and PCa in MeS mice. Further research will be necessary to track these miRNAs in the interaction between these tissues as well as their role in PCa patients with MeS.


Subject(s)
Gene Expression Regulation, Neoplastic , Metabolic Syndrome/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Transcriptome , Adipose Tissue/metabolism , Animals , Carcinogenesis/genetics , Gene Expression Profiling , Male , Mice, Inbred C57BL
6.
Cell Death Dis ; 10(4): 299, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30931931

ABSTRACT

About 20% of prostate cancer (PCa) patients progress to metastatic disease. Metabolic syndrome (MeS) is a pathophysiological disorder that increases PCa risk and aggressiveness. C-terminal binding protein (CTBP1) is a transcriptional corepressor that is activated by high-fat diet (HFD). Previously, our group established a MeS/PCa mice model that identified CTBP1 as a novel link associating both diseases. Here, we integrated in vitro (prostate tumor cell lines) and in vivo (MeS/PCa NSG mice) models with molecular and cell biology techniques to investigate MeS/CTBP1 impact over PCa progression, particularly over cell adhesion, mRNA/miRNA expression and PCa spontaneous metastasis development. We found that CTBP1/MeS regulated expression of genes relevant to cell adhesion and PCa progression, such as cadherins, integrins, connexins, and miRNAs in PC3 xenografts. CTBP1 diminished PCa cell adhesion, membrane attachment to substrate and increased filopodia number by modulating gene expression to favor a mesenchymal phenotype. NSG mice fed with HFD and inoculated with CTBP1-depleted PC3 cells, showed a decreased number and size of lung metastases compared to control. Finally, CTBP1 and HFD reduce hsa-mir-30b-5p plasma levels in mice. This study uncovers for the first time the role of CTBP1/MeS in PCa progression and its molecular targets.


Subject(s)
Alcohol Oxidoreductases/metabolism , Cell Adhesion/genetics , DNA-Binding Proteins/metabolism , Metabolic Syndrome/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , RNA, Messenger/genetics , Alcohol Oxidoreductases/genetics , Animals , DNA-Binding Proteins/genetics , Diet, High-Fat , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Heterografts/cytology , Heterografts/metabolism , Humans , Male , Metabolic Syndrome/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/metabolism , Neoplasm Metastasis , PC-3 Cells , Prostatic Neoplasms/pathology , Pseudopodia/genetics , Pseudopodia/metabolism , RNA, Messenger/metabolism
7.
Int J Cancer ; 144(5): 1115-1127, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30152543

ABSTRACT

Metabolic syndrome (MeS) increases prostate cancer (PCa) risk and aggressiveness. C-terminal binding protein 1 (CTBP1) is a transcriptional co-repressor of tumor suppressor genes that is activated by low NAD+ /NADH ratio. Previously, our group established a MeS and PCa mice model that identified CTBP1 as a novel link associating both diseases. We found that CTBP1 controls the transcription of aromatase (CYP19A1), a key enzyme that converts androgens to estrogens. The aim of this work was to investigate the mechanism that explains CTBP1 as a link between MeS and PCa based on CYP19A1 and estrogen synthesis regulation using PCa cell lines, MeS/PCa mice and adipose co-culture systems. We found that CTBP1 and E1A binding protein p300 (EP300) bind to CYP19A1 promoter and downregulate its expression in PC3 cells. Estradiol, through estrogen receptor beta, released CTBP1 from CYP19A1 promoter triggering its transcription and modulating PCa cell proliferation. We generated NSG and C57BL/6J MeS mice by chronically feeding animals with high fat diet. In the NSG model, CTBP1 depleted PCa xenografts showed an increase in CYP19A1 expression with subsequent increment in intratumor estradiol concentrations. Additionally, in C57BL/6J mice, MeS induced hypertrophy, hyperplasia and inflammation of the white adipose tissue, which leads to a proinflammatory phenotype and increased serum estradiol concentration. Thus, MeS increased PCa growth and Ctbp1, Fabp4 and IL-6 expression levels. These results describe, for the first time, a novel CTBP1/CYP19A1/Estradiol axis that explains, in part, the mechanism for prostate tumor growth increase by MeS.


Subject(s)
Adipose Tissue/pathology , Alcohol Oxidoreductases/genetics , Aromatase/genetics , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Estradiol/genetics , Metabolic Syndrome/genetics , Prostatic Neoplasms/genetics , Animals , Cell Line, Tumor , Coculture Techniques/methods , Down-Regulation/genetics , E1A-Associated p300 Protein/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Male , Metabolic Syndrome/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , PC-3 Cells , Promoter Regions, Genetic/genetics , Prostatic Neoplasms/pathology , Transcription, Genetic/genetics
8.
Int J Cancer ; 143(4): 897-906, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29536528

ABSTRACT

Prostate cancer (PCa) is the most common cancer among men. Metabolic syndrome (MeS) is associated with increased PCa aggressiveness and recurrence. Previously, we proposed C-terminal binding protein 1 (CTBP1), a transcriptional co-repressor, as a molecular link between these two conditions. Notably, CTBP1 depletion decreased PCa growth in MeS mice. The aim of this study was to investigate the molecular mechanisms that explain the link between MeS and PCa mediated by CTBP1. We found that CTBP1 repressed chloride channel accessory 2 (CLCA2) expression in prostate xenografts developed in MeS animals. CTBP1 bound to CLCA2 promoter and repressed its transcription and promoter activity in PCa cell lines. Furthermore, we found that CTBP1 formed a repressor complex with ZEB1, EP300 and HDACs that modulates the CLCA2 promoter activity. CLCA2 promoted PCa cell adhesion inhibiting epithelial-mesenchymal transition (EMT) and activating CTNNB1 together with epithelial marker (CDH1) induction, and mesenchymal markers (SNAI2 and TWIST1) repression. Moreover, CLCA2 depletion in PCa cells injected subcutaneously in MeS mice increased the circulating tumor cells foci compared to control. A microRNA (miRNA) expression microarray from PCa xenografts developed in MeS mice, showed 21 miRNAs modulated by CTBP1 involved in angiogenesis, extracellular matrix organization, focal adhesion and adherents junctions, among others. We found that miR-196b-5p directly targets CLCA2 by cloning CLCA2 3'UTR and performing reporter assays. Altogether, we identified a new molecular mechanism to explain PCa and MeS link based on CLCA2 repression by CTBP1 and miR-196b-5p molecules that might act as key factors in the progression onset of this disease.


Subject(s)
Alcohol Oxidoreductases/physiology , Cell Adhesion/physiology , Chloride Channels/genetics , DNA-Binding Proteins/physiology , E1A-Associated p300 Protein/physiology , Epigenesis, Genetic , Epithelial-Mesenchymal Transition/physiology , Histone Deacetylases/physiology , Metabolic Syndrome/complications , MicroRNAs/physiology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Zinc Finger E-box-Binding Homeobox 1/physiology , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Male , Mice , Promoter Regions, Genetic , Prostatic Neoplasms/complications , Transcription, Genetic
9.
Oncotarget ; 9(17): 13848-13858, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29568399

ABSTRACT

Metastatic breast cancer (BrCa) is still one of the main causes of cancer death in women. Metabolic syndrome (MeS), a risk factor for BrCa, is associated to high grade tumors, increased metastasis and recurrence of this disease. C-terminal binding protein 1 (CTBP1) is a co-repressor of tumor suppressor genes that is activated by low NAD+/NADH ratio. Previously, we demonstrated that CTBP1 hyperactivation by MeS increased tumor growth in MDA-MB-231-derived xenografts regulating several genes and miRNAs. In this work, our aim was to elucidate the role of CTBP1 and MeS in BrCa metastasis. We found that CTBP1 protein diminished adhesion while increased migration of triple negative BrCa cells. CTBP1 and MeS modulated the expression of multiple genes (ITGB4, ITGB6, PRSS2, COL17A1 and FABP4) and miRNAs (miR-378a-3p, miR-146a-5p, let-7e-3p, miR-381-5p, miR-194-5p, miR-494-3p) involved in BrCa progression of MDA-MB-231-derived xenografts. Furthermore, we demonstrated that MeS increased lung micrometastasis and liver neoplastic disease in mice. CTBP1 hyperactivation seems to be critical for MeS effect on BrCa metastasis since CTBP1 depletion completely impaired the detection of circulating tumor cells. Our results highlight CTBP1 and MeS impact on BrCa progression positioning them as key properties to be considered for BrCa patient prognosis and management.

10.
Reproduction ; 154(4): R81-R97, 2017 10.
Article in English | MEDLINE | ID: mdl-28878093

ABSTRACT

MicroRNAs (miRNAs) are non-coding small RNAs that target mRNA to reduce protein expression. They play fundamental roles in several diseases, including prostate cancer (PCa). A single miRNA can target hundreds of mRNAs and coordinately regulate them, which implicates them in nearly every biological pathway. Hence, miRNAs modulate proliferation, cell cycle, apoptosis, adhesion, migration, invasion and metastasis, most of them constituting crucial hallmarks of cancer. Due to these properties, miRNAs emerged as promising tools for diagnostic, prognosis and management of cancer patients. Moreover, they come out as potential targets for cancer treatment, and several efforts are being made to progress in the field of miRNA-based cancer therapy. In this review, we will summarize the recent information about miRNAs in PCa. We will recapitulate all the miRNAs involved in the androgen pathway and the biology of PCa, focusing in PCa initiation and progression. In particular, we will describe the miRNAs associated with cell proliferation, cell cycle and apoptosis in PCa, as well as invasion, adhesion and metastatic miRNAs. We will revise the recent progress made understanding the role of circulating miRNAs identified in PCa that might be useful for PCa patient stratification. Another key aspect to be discussed in this review is miRNAs' role in PCa therapy, including the miRNAs delivery.


Subject(s)
Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Androgens/metabolism , Animals , Biomarkers, Tumor/blood , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/blood , MicroRNAs/therapeutic use , Molecular Diagnostic Techniques , Predictive Value of Tests , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction
11.
Oncotarget ; 7(14): 18798-811, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26933806

ABSTRACT

Metabolic syndrome (MeS) has been identified as a risk factor for breast cancer. C-terminal binding protein 1 (CtBP1) is a co-repressor of tumor suppressor genes that is activated by low NAD+/NADH ratio. High fat diet (HFD) increases intracellular NADH. We investigated the effect of CtBP1 hyperactivation by HFD intake on mouse breast carcinogenesis. We generated a MeS-like disease in female mice by chronically feeding animals with HFD. MeS increased postnatal mammary gland development and generated prominent duct patterns with markedly increased CtBP1 and Cyclin D1 expression. CtBP1 induced breast cancer cells proliferation. Serum from animals with MeS enriched the stem-like/progenitor cell population from breast cancer cells. CtBP1 increased breast tumor growth in MeS mice modulating multiple genes and miRNA expression implicated in cell proliferation, progenitor cells phenotype, epithelial to mesenchymal transition, mammary development and cell communication in the xenografts. These results define a novel function for CtBP1 in breast carcinogenesis.


Subject(s)
Alcohol Oxidoreductases/metabolism , Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Metabolic Syndrome/metabolism , MicroRNAs/metabolism , Animals , Breast Neoplasms/genetics , Diet, High-Fat , Female , Heterografts , Humans , MCF-7 Cells , Metabolic Syndrome/genetics , Mice , Mice, Nude , NIH 3T3 Cells , Random Allocation , Risk Factors
12.
Rev. argent. microbiol ; 48(1): 27-37, mar. 2016. ilus, tab
Article in Spanish | LILACS | ID: biblio-843151

ABSTRACT

El manejo clínico y epidemiológico de los pacientes con fibrosis quística (FQ) con exacerbaciones pulmonares agudas o infecciones pulmonares crónicas demanda una actualización permanente de procedimientos médicos y microbiológicos, estos se asocian con la constante evolución de los agentes patógenos durante la colonización de su hospedador. Para poder monitorear la dinámica de estos procesos es fundamental disponer de sistemas expertos que permitan almacenar, extraer y utilizar la información generada a partir de estudios realizados sobre el paciente y los microorganismos aislados de aquel. En este trabajo hemos diseñado y desarrollado una base de datos on-line basada en un sistema informático que permite el almacenamiento, el manejo y la visualización de la información proveniente de estudios clínicos y de análisis microbiológicos de bacterias obtenidas del tracto respiratorio del paciente con FQ. Este sistema informático fue designado como Cystic Fibrosis Cloud database (CFC database) y está disponible en el sitio http://servoy.infocomsa.com/cfc_database. Está compuesto por una base de datos principal y una interfaz on-line, la cual emplea la arquitectura de productos Servoy basada en tecnología Java. Si bien el sistema CFC database puede ser implementado como un programa local de uso privado en los centros de asistencia a pacientes con FQ, admite también la posibilidad de ser empleado, actualizado y compartido por diferentes usuarios, quienes pueden acceder a la información almacenada de manera ordenada, práctica y segura. La implementación del CFC database podría tener una gran impacto en la monitorización de las infecciones respiratorias, la prevención de exacerbaciones, la detección de organismos emergentes y la adecuación de las estrategias de control de infecciones pulmonares en pacientes con FQ


The epidemiological and clinical management of cystic fibrosis (CF) patients suffering from acute pulmonary exacerbations or chronic lung infections demands continuous updating of medical and microbiological processes associated with the constant evolution of pathogens during host colonization. In order to monitor the dynamics of these processes, it is essential to have expert systems capable of storing and subsequently extracting the information generated from different studies of the patients and microorganisms isolated from them. In this work we have designed and developed an on-line database based on an information system that allows to store, manage and visualize data from clinical studies and microbiological analysis of bacteria obtained from the respiratory tract of patients suffering from cystic fibrosis. The information system, named Cystic Fibrosis Cloud database is available on the http://servoy.infocomsa.com/cfc_database site and is composed of a main database and a web-based interface, which uses Servoy's product architecture based on Java technology. Although the CFC database system can be implemented as a local program for private use in CF centers, it can also be used, updated and shared by different users who can access the stored information in a systematic, practical and safe manner. The implementation of the CFC database could have a significant impact on the monitoring of respiratory infections, the prevention of exacerbations, the detection of emerging organisms, and the adequacy of control strategies for lung infections in CF patients


Subject(s)
Information Storage and Retrieval/methods , Cystic Fibrosis/physiopathology , Cystic Fibrosis/microbiology , Data Visualization , Database , Data Management/organization & administration , Monitoring, Physiologic/methods
13.
Rev Argent Microbiol ; 48(1): 27-37, 2016.
Article in Spanish | MEDLINE | ID: mdl-26895996

ABSTRACT

The epidemiological and clinical management of cystic fibrosis (CF) patients suffering from acute pulmonary exacerbations or chronic lung infections demands continuous updating of medical and microbiological processes associated with the constant evolution of pathogens during host colonization. In order to monitor the dynamics of these processes, it is essential to have expert systems capable of storing and subsequently extracting the information generated from different studies of the patients and microorganisms isolated from them. In this work we have designed and developed an on-line database based on an information system that allows to store, manage and visualize data from clinical studies and microbiological analysis of bacteria obtained from the respiratory tract of patients suffering from cystic fibrosis. The information system, named Cystic Fibrosis Cloud database is available on the http://servoy.infocomsa.com/cfc_database site and is composed of a main database and a web-based interface, which uses Servoy's product architecture based on Java technology. Although the CFC database system can be implemented as a local program for private use in CF centers, it can also be used, updated and shared by different users who can access the stored information in a systematic, practical and safe manner. The implementation of the CFC database could have a significant impact on the monitoring of respiratory infections, the prevention of exacerbations, the detection of emerging organisms, and the adequacy of control strategies for lung infections in CF patients.


Subject(s)
Cloud Computing , Cystic Fibrosis , Databases, Factual , Cystic Fibrosis/complications , Humans , Respiratory Tract Infections/etiology
14.
Mol Cancer Res ; 13(11): 1455-64, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26227317

ABSTRACT

UNLABELLED: Prostate cancer is the second leading cause of cancer-related death in men worldwide. Many factors that participate in the development of prostate cancer promote imbalance in the redox state of the cell. Accumulation of reactive oxygen species causes injury to cell structures, ultimately leading to cancer development. The antioxidant enzyme heme oxygenase 1 (HMOX1/HO-1) is responsible for the maintenance of the cellular homeostasis, playing a critical role in the oxidative stress and the regulation of prostate cancer development and progression. In the present study, the transcriptional regulation of HO-1 was investigated in prostate cancer. Interestingly, the tumor suppressor BRCA1 binds to the HO-1 promoter and modulates HO-1, inducing its protein levels through both the increment of its promoter activity and the induction of its transcriptional activation. In addition, in vitro and in vivo analyses show that BRCA1 also controls HO-1-negative targets: MMP9, uPA, and Cyclin D1. HO-1 transcriptional regulation is also modulated by oxidative and genotoxic agents. Induction of DNA damage by mitoxantrone and etoposide repressed HO-1 transcription, whereas hydrogen peroxide and doxorubicin induced its expression. Xenograft studies showed that HO-1 regulation by doxorubicin also occurs in vivo. Immunofluorescence analysis revealed that BRCA1 overexpression and/or doxorubicin exposure induced the cytoplasmic retention of HO-1. Finally, the transcription factor NRF2 cooperates with BRCA1 protein to activate HO-1 promoter activity. In summary, these results show that the activation of BRCA1-NRF2/HO-1 axis defines a new mechanism for the maintenance of the cellular homeostasis in prostate cancer. IMPLICATIONS: Oxidative and genotoxic stress converge on HO-1 transcriptional activity through the combined actions of BRCA1 and NRF2.


Subject(s)
BRCA1 Protein/metabolism , Heme Oxygenase-1/genetics , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , DNA Damage/genetics , Heme Oxygenase-1/metabolism , Heterografts , Humans , Male , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics , Prostatic Neoplasms/pathology , Protein Binding , Transcriptional Activation
15.
Pathog Dis ; 69(3): 194-204, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23893966

ABSTRACT

Bordetella pertussis is the causative agent of pertussis, aka whooping cough. Although generally considered an extracellular pathogen, this bacterium has been found inside respiratory epithelial cells, which might represent a survival strategy inside the host. Relatively little is known, however, about the mechanism of internalization and the fate of B. pertussis inside the epithelia. We show here that B. pertussis is able to enter those cells by a mechanism dependent on microtubule assembly, lipid raft integrity, and the activation of a tyrosine-kinase-mediated signaling. Once inside the cell, a significant proportion of the intracellular bacteria evade phagolysosomal fusion and remain viable in nonacidic lysosome-associated membrane-protein-1-negative compartments. In addition, intracellular B. pertussis was found able to repopulate the extracellular environment after complete elimination of the extracellular bacteria with polymyxin B. Taken together, these data suggest that B. pertussis is able to survive within respiratory epithelial cells and by this means potentially contribute to host immune system evasion.


Subject(s)
Bordetella pertussis/immunology , Respiratory Mucosa/immunology , Respiratory Mucosa/microbiology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/microbiology , Cell Line , Humans , Intracellular Space/microbiology , Membrane Microdomains/metabolism , Microtubules/metabolism , Protein-Tyrosine Kinases/metabolism , Whooping Cough/immunology , Whooping Cough/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...