Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(2): e0276829, 2023.
Article in English | MEDLINE | ID: mdl-36757919

ABSTRACT

Antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target multiple epitopes on different domains of the spike protein, and other SARS-CoV-2 proteins. We developed a SARS-CoV-2 multi-antigen protein microarray with the nucleocapsid, spike and its domains (S1, S2), and variants with single (D614G, E484K, N501Y) or double substitutions (N501Y/Deletion69/70), allowing a more detailed high-throughput analysis of the antibody repertoire following infection. The assay was demonstrated to be reliable and comparable to ELISA. We analyzed antibodies from 18 COVID-19 patients and 12 recovered convalescent donors. The S IgG level was higher than N IgG in most of the COVID-19 patients, and the receptor-binding domain of S1 showed high reactivity, but no antibodies were detected against the heptad repeat domain 2 of S2. Furthermore, antibodies were detected against S variants with single and double substitutions in COVID-19 patients who were infected with SARS-CoV-2 early in the pandemic. Here we demonstrated that the SARS-CoV-2 multi-antigen protein microarray is a powerful tool for detailed characterization of antibody responses, with potential utility in understanding the disease progress and assessing current vaccines and therapies against evolving SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibody Formation/genetics , Antibody Formation/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Immunoglobulin G , Protein Array Analysis , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
2.
PLoS Comput Biol ; 18(1): e1009778, 2022 01.
Article in English | MEDLINE | ID: mdl-35041647

ABSTRACT

The clinical outcome of SARS-CoV-2 infection varies widely between individuals. Machine learning models can support decision making in healthcare by assessing fatality risk in patients that do not yet show severe signs of COVID-19. Most predictive models rely on static demographic features and clinical values obtained upon hospitalization. However, time-dependent biomarkers associated with COVID-19 severity, such as antibody titers, can substantially contribute to the development of more accurate outcome models. Here we show that models trained on immune biomarkers, longitudinally monitored throughout hospitalization, predicted mortality and were more accurate than models based on demographic and clinical data upon hospital admission. Our best-performing predictive models were based on the temporal analysis of anti-SARS-CoV-2 Spike IgG titers, white blood cell (WBC), neutrophil and lymphocyte counts. These biomarkers, together with C-reactive protein and blood urea nitrogen levels, were found to correlate with severity of disease and mortality in a time-dependent manner. Shapley additive explanations of our model revealed the higher predictive value of day post-symptom onset (PSO) as hospitalization progresses and showed how immune biomarkers contribute to predict mortality. In sum, we demonstrate that the kinetics of immune biomarkers can inform clinical models to serve as a powerful monitoring tool for predicting fatality risk in hospitalized COVID-19 patients, underscoring the importance of contextualizing clinical parameters according to their time post-symptom onset.


Subject(s)
Antibodies, Viral/blood , COVID-19 , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , COVID-19/therapy , Computational Biology , Diagnosis, Computer-Assisted , Female , Humans , Male , Middle Aged , Prognosis , Spike Glycoprotein, Coronavirus/immunology , Young Adult
3.
ACS Omega ; 6(1): 85-102, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33458462

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike (S) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F and ExpiCHO-S cells, two different cell lines selected for increased protein expression. We show that ExpiCHO-S cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural (cryo-EM) characterizations of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high-quality S protein (nonaggregated, uniform material with appropriate biochemical and biophysical properties), and analysis of 20 deposited S protein cryo-EM structures reveals conformation plasticity in the region composed of amino acids 614-642 and 828-854. Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome and report no novel binding partners and notably fail to validate the Spike:CD147 interaction. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural, and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.

4.
PLoS One ; 15(6): e0233578, 2020.
Article in English | MEDLINE | ID: mdl-32497097

ABSTRACT

The B7 family represents one of the best-studied subgroups within the Ig superfamily, yet new interactions continue to be discovered. However, this binding promiscuity represents a major challenge for defining the biological contribution of each specific interaction. We developed a strategy for addressing these challenges by combining cell microarray and high-throughput FACS methods to screen for promiscuous binding events, map binding interfaces, and generate functionally selective reagents. Applying this approach to the interactions of mPD-L1 with its receptor mPD-1 and its ligand mB7-1, we identified the binding interface of mB7-1 on mPD-L1 and as a result generated mPD-L1 mutants with binding selectivity for mB7-1 or mPD-1. Next, using a panel of mB7-1 mutants, we mapped the binding sites of mCTLA-4, mCD28 and mPD-L1. Surprisingly, the mPD-L1 binding site mapped to the dimer interface surface of mB7-1, placing it distal from the CTLA-4/CD28 recognition surface. Using two independent approaches, we demonstrated that mPD-L1 and mB7-1 bind in cis, consistent with recent reports from Chaudhri A et al. and Sugiura D et al. We further provide evidence that while CTLA-4 and CD28 do not directly compete with PD-L1 for binding to B7-1, they can disrupt the cis PD-L1:B7-1 complex by reorganizing B7-1 on the cell surface. These observations offer new functional insights into the regulatory mechanisms associated with this group of B7 family proteins and provide new tools to elucidate their function in vitro and in vivo.


Subject(s)
Antigen-Antibody Complex/metabolism , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , Mutant Proteins/metabolism , Animals , Antigens, Surface/metabolism , B7-1 Antigen/genetics , B7-H1 Antigen/genetics , Binding Sites , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/metabolism , HEK293 Cells , Humans , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Protein Binding , Transfection
5.
bioRxiv ; 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32587972

ABSTRACT

Coronavirus disease 2019 ( COVID-19 ) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2 ), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike ( S ) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F ™ and ExpiCHO-S ™ cells, two different cell lines selected for increased expression of secreted glycoproteins. We show that ExpiCHO-S ™ cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural ( cryo-EM ) characterization of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high quality S protein (non-aggregated, uniform material with appropriate biochemical and biophysical properties). Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs, and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.

6.
Am J Respir Cell Mol Biol ; 46(3): 365-71, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22021338

ABSTRACT

Many phytochemicals possess antioxidant and cancer-preventive properties, some putatively through antioxidant response element-mediated phase II metabolism, entailing mutagen/oxidant quenching. In our recent studies, however, most candidate phytochemical agents were not potent in inducing phase II genes in normal human lung cells. In this study, we applied a messenger RNA (mRNA)-specific gene expression-based high throughput in vitro screening approach to discover new, potent plant-derived phase II inducing chemopreventive agents. Primary normal human bronchial epithelial (NHBE) cells and immortalized human bronchial epithelial cells (HBECs) were exposed to 800 individual compounds in the MicroSource Natural Products Library. At a level achievable in humans by diet (1.0 µM), 2,3-dihydroxy-4-methoxy-4'-ethoxybenzophenone (DMEBP), triacetylresveratrol (TRES), ivermectin, sanguinarine sulfate, and daunorubicin induced reduced nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1 (NQO1) mRNA and protein expression in NHBE cells. DMEBP and TRES were the most attractive agents as coupling potency and low toxicity for induction of NQO1 (mRNA level, ≥3- to 10.8-fold that of control; protein level, ≥ two- to fourfold that of control). Induction of glutathione S-transferase pi mRNA expression was modest, and none was apparent for glutathione S-transferase pi protein expression. Measurements of reactive oxygen species and glutathione/oxidized glutathione ratio showed an antioxidant effect for DMEBP, but no definite effect was found for TRES in NHBE cells. Exposure of NHBE cells to H(2)O(2) induced nuclear translocation of nuclear factor erythroid 2-related factor 2, but this translocation was not significantly inhibited by TRES and DMEBP. These studies show that potency and low toxicity may align for two potential NQO1-inducing agents, DMEBP and TRES.


Subject(s)
Anticarcinogenic Agents/pharmacology , Antioxidants/pharmacology , Bronchi/drug effects , Epithelial Cells/drug effects , High-Throughput Screening Assays , NAD(P)H Dehydrogenase (Quinone)/biosynthesis , Anticarcinogenic Agents/toxicity , Antioxidants/toxicity , Benzophenones/pharmacology , Blotting, Western , Bronchi/cytology , Bronchi/enzymology , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Induction/drug effects , Epithelial Cells/enzymology , Glutathione/metabolism , Glutathione S-Transferase pi/biosynthesis , Humans , NAD(P)H Dehydrogenase (Quinone)/genetics , Polymerase Chain Reaction , RNA, Messenger/biosynthesis , Reactive Oxygen Species/metabolism , Reproducibility of Results , Resveratrol , Stilbenes/pharmacology
7.
Hepatology ; 50(2): 575-84, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19582816

ABSTRACT

UNLABELLED: Transforming growth factor-beta / bone morphogenetic protein (TGFbeta/BMP) signaling has a gradient of effects on cell fate choice in the fetal mouse liver. The molecular mechanism to understand why adjacent cells develop into bile ducts or grow actively as hepatocytes in the ubiquitous presence of both TGFbeta ligands and receptors has been unknown. We hypothesized that microRNAs (miRNAs) might play a role in cell fate decisions in the liver. miRNA profiling during late fetal development in the mouse identified miR-23b cluster miRNAs comprising miR-23b, miR-27b, and miR-24-1 and miR-10a, miR-26a, and miR-30a as up-regulated. In situ hybridization of fetal liver at embryonic day 17.5 of gestation revealed miR-23b cluster expression only in fetal hepatocytes. A complementary (c)DNA microarray approach was used to identify genes with a reciprocal expression pattern to that of miR-23b cluster miRNAs. This approach identified Smads (mothers against decapentaplegic homolog), the key TGFbeta signaling molecules, as putative miR-23b cluster targets. Bioinformatic analysis identified multiple candidate target sites in the 3' UTRs (untranslated regions) of Smads 3, 4, and 5. Dual luciferase reporter assays confirmed down-regulation of constructs containing Smad 3, 4, or 5, 3' UTRs by a mixture of miR-23b cluster mimics. Knockdown of miR-23b miRNAs during hepatocytic differentiation of a fetal liver stem cell line, HBC-3, promoted expression of bile duct genes, in addition to Smads, in these cells. In contrast, ectopic expression of miR-23b mimics during bile duct differentiation of HBC-3 cells blocked the process. CONCLUSION: Our data provide a model in which miR-23b miRNAs repress bile duct gene expression in fetal hepatocytes while promoting their growth by down-regulating Smads and consequently TGFbeta signaling. Concomitantly, low levels of the miR-23b miRNAs are needed in cholangiocytes to allow TGFbeta signaling and bile duct formation.


Subject(s)
Cell Differentiation , Hepatocytes/metabolism , Liver/metabolism , MicroRNAs/metabolism , Transforming Growth Factor beta/metabolism , Animals , Bile Ducts/cytology , Bone Morphogenetic Proteins/metabolism , Cell Line , Gene Expression Profiling , Hepatocytes/cytology , Liver/cytology , Liver/embryology , Mice , Oligonucleotide Array Sequence Analysis , RNA, Small Interfering/metabolism , Smad Proteins/metabolism
8.
Nucleic Acids Res ; 35(15): e94, 2007.
Article in English | MEDLINE | ID: mdl-17636051

ABSTRACT

Gene expression profiling of formalin-fixed and paraffin-embedded (FFPE) specimens, banked from completed clinical trials and routine clinical care, has the potential to yield valuable information implicating and linking genes with clinical parameters. In order to prepare high-quality cDNA from highly fragmented FFPE-RNA, previously precluded from high-throughput analyses, we have designed a novel strategy based on the nucleic acid restoration of incomplete cDNA sequences prior to T7 in vitro transcription (IVT) amplification. We describe this strategy as complementary-template reverse-transcription (CT-RT) because short single-stranded T7-oligo-dT24-VN-DNA sequences, obtained from FFPE-RNA, are used as primers for the RT of complementary RNA templates contained in a sense-RNA library. We validated our assay by determining the correlation between expression profiles of a matched 10-year-old frozen and FFPE breast cancer sample. We show that T7 IVT-amplification of cDNA transcripts restored by CT-RT is a specific and reliable process that allows recovery of transcriptional features undetectable by direct T7 IVT-amplification of FFPE-RNA. Furthermore, CT-RT restored 35-41% of the transcripts from archived breast and cervical specimens when compared to matched frozen tissue; and profiles included tissue-specific transcripts. Our results indicate that CT-RT allows microarray profiling of severely degraded RNA that could not be analyzed by previous methods.


Subject(s)
Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Biological Specimen Banks , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , DNA Primers , DNA, Complementary/biosynthesis , Female , Fixatives/chemistry , Formaldehyde/chemistry , Genes, Neoplasm , Humans , Paraffin Embedding , RNA, Complementary/biosynthesis , Reproducibility of Results , Reverse Transcription , Templates, Genetic
9.
J Biomol Tech ; 18(3): 150-61, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17595311

ABSTRACT

Microarrays have revolutionized many areas of biology due to our technical ability to quantify tens of thousands of transcripts within a single experiment. However, there are still many areas that cannot benefit from this technology due to the amount of biological material needed for microarray analysis. In response to this demand, chemistries have been developed that boast the capability of generating targets from nanogram amounts of total RnA, reflecting minimal amounts of biological material, on the order of several hundred or thousand cells. Herein, we describe the evaluation of four chemistries for RnA amplification in terms of reproducibility, sensitivity, accuracy, and comparability to results from a single round of T7 amplification. No evidence for false-positive measurements of differential expression was observed. In contrast, clear differences between chemistries in sensitivity and accuracy were detected. PCR validation showed an interaction of probe sequence on the array and target labeling chemistry, resulting in a chemistry-dependent probe set sensitivity varying over an order of magnitude.


Subject(s)
Gene Expression Profiling/methods , Nucleic Acid Amplification Techniques/methods , Cell Line, Tumor , Humans , Sample Size , Sensitivity and Specificity
10.
J Biomol Tech ; 17(2): 176-86, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16741246

ABSTRACT

Over the past several years, microarray technology has evolved into a critical component of any discovery-based program. Since 1999, the Association of Biomolecular Resource Facilities (ABRF) Microarray Research Group (MARG) has conducted biennial surveys designed to generate a profile of microarray service laboratories and, more importantly, an overview of technology development and implementation. Survey questions addressed instrumentation, protocols, staffing, funding, and work flow in a microarray facility. Presented herein are the results of the MARG 2005 survey; where possible, trends in the field are discussed and compared to data collected from previous surveys.


Subject(s)
Computational Biology/methods , Oligonucleotide Array Sequence Analysis/methods , Proteomics/methods , Proteomics/trends , Animals , Data Interpretation, Statistical , Genomics/methods , Humans , Mice , Oligonucleotide Array Sequence Analysis/instrumentation , Protein Array Analysis/instrumentation , Protein Array Analysis/methods , Proteomics/instrumentation , Reverse Transcriptase Polymerase Chain Reaction , Software
11.
Nucleic Acids Res ; 32(15): e120, 2004 Aug 25.
Article in English | MEDLINE | ID: mdl-15329382

ABSTRACT

We have developed RNA expression microarrays (REMs), in which each spot on a glass support is composed of a population of cDNAs synthesized from a cell or tissue sample. We used simultaneous hybridization with test and reference (housekeeping) genes to calculate an expression ratio based on normalization with the endogenous reference gene. A test REM containing artificial mixtures of liver cDNA and dilutions of the bacterial LysA gene cDNA demonstrated the feasibility of detecting transcripts at a sensitivity of four copies of LysA mRNA per liver cell equivalent. Furthermore, LysA cDNA detection varied linearly across a standard curve that matched the sensitivity of quantitative real-time PCR. In REMs with real samples, we detected organ-specific expression of albumin, Hnf-4 and Igfbp-1, in a set of mouse organ cDNA populations and c-Myc expression in tumor samples in paired tumor/normal tissue cDNA samples. REMs extend the use of classic microarrays in that a single REM can contain cDNAs from hundreds to thousands of cell or tissue samples each representing a specific physiological or pathophysiological state. REMs will extend the analysis of valuable samples by providing a common broad based platform for their analysis and will promote research aimed at defining gene functions, by broadening our understanding of their expression patterns in health and disease.


Subject(s)
Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/metabolism , Animals , DNA, Complementary/biosynthesis , Female , Gene Expression Profiling/standards , Mice , Mice, Inbred C57BL , Neoplasms/genetics , Neoplasms/metabolism , Oligonucleotide Array Sequence Analysis/standards , Organ Specificity , Polymerase Chain Reaction , RNA, Messenger/analysis , Reference Standards
12.
Nat Med ; 8(10): 1115-21, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12357247

ABSTRACT

During mammalian central nervous system (CNS) development, contact-mediated activation of Notch1 receptors on oligodendrocyte precursors by the ligand Jagged1 induces Hes5, which inhibits maturation of these cells. Here we tested whether the Notch pathway is re-expressed in the adult CNS in multiple sclerosis (MS), an inflammatory demyelinating disease in which remyelination is typically limited. We found that transforming growth factor-beta 1 (TGF-beta 1), a cytokine upregulated in MS, specifically re-induced Jagged1 in primary cultures of human astrocytes. Within and around active MS plaques lacking remyelination, Jagged1 was expressed at high levels by hypertrophic astrocytes, whereas Notch1 and Hes5 localized to cells with an immature oligodendrocyte phenotype, and TGF-beta 1 was associated with perivascular extracellular matrix in the same areas. In contrast, there was negligible Jagged1 expression in remyelinated lesions. Experiments in vitro showed that Jagged1 signaling inhibited process outgrowth from primary human oligodendrocytes. These data are the first to implicate the Notch pathway in the limited remyelination in MS. Thus, Notch may represent a potential target for therapeutic intervention in this disease.


Subject(s)
Membrane Proteins/metabolism , Multiple Sclerosis/physiopathology , Oligodendroglia/physiology , Proteins/metabolism , Transcription Factors , Animals , Astrocytes/cytology , Astrocytes/metabolism , Calcium-Binding Proteins , Cells, Cultured , Humans , Intercellular Signaling Peptides and Proteins , Jagged-1 Protein , Multiple Sclerosis/pathology , Myelin Sheath/metabolism , Oligodendroglia/cytology , Oligonucleotide Array Sequence Analysis , Receptor, Notch1 , Receptors, Cell Surface/metabolism , Serrate-Jagged Proteins , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1
13.
J Biomol Tech ; 13(1): 5-19, 2002 Mar.
Article in English | MEDLINE | ID: mdl-19498959

ABSTRACT

We studied six types of errors that affect the experimental results obtained with the spotted cDNA technology, proposing a new experimental strategy and a four-step algorithm to improve data accuracy. In an experiment analyzed with this method, mRNA extracted from neuroblastoma (N2A) cells and a clone transfected with the neuronal gap junction protein Cx36 were hybridized on 10 chips, each spotted with 2512 known mouse cDNAs. We found 53 upregulated and 23 downregulated genes with expression ratios exceeding 1.5-fold. By contrast, the newly introduced standard gene expression score, which considers the normal variability of gene expression in the reference cells, revealed that Cx36 transfection (p < 0.05) upregulated 161 genes and downregulated 61 genes. These results demonstrate the necessity to correct the raw data obtained from cDNA microarrays for systematic errors and indicate that use of the standard expression score significantly extends the identification of gene expression changes following experimental intervention.

14.
J Biomol Tech ; 13(3): 143-57, 2002 Sep.
Article in English | MEDLINE | ID: mdl-19498978

ABSTRACT

DNA microarray users face many challenges to obtain accurate results, including complex technical errors, natural variability of biological systems, imperfect reproducibility of reference standards, and difficulties in acquisition and processing of large amounts of data. Therefore, investigators should be aware of potential sources of variability and account for them in the experimental design and execution. This work reports our experience in identifying factors that alter the reliability of the results and in diminishing effects of these factors. We have studied the hybridization reproducibility in cDNA microarray chips, both as absolute values and expression ratios, and the nature and impact of several technical, acquisition, and processing errors. A new experimental strategy is proposed and mathematical algorithms developed that efficiently correct the errors and thereby increase the information obtainable through microarray studies. These algorithms reduced the variability not associated with biological system to less than a quarter of its initial value and have substantially enhanced reliability in experiments on brain and cultured neuroblastoma cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...