Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-499583

ABSTRACT

SARS-CoV-2 is a positive single-stranded RNA virus that interacts with proteins of infected cells at different stages of its life cycle. These interactions are necessary for the host to recognize and block the replication of the virus. Yet, if cells fail to block SARS-CoV-2, host proteins are recruited to translate, transcribe and replicate the genetic material of the virus. To identify the host proteins that bind to SARS-CoV-2 RNA, we adopted the RNA-Protein Interaction Detection coupled to Mass Spectrometry (RaPID-MS) technology, which allows the purification and identification by MS-based proteomics of the proteins associated with a specific RNA of interest expressed in mammalian cells. We specifically investigated proteins associated with the 5' and 3' end regions of SARS-CoV-2 RNA. As associations might involve non-physical protein-RNA interactions, we defined a set of reliable protein-RNA interactions by exploiting the predictive power of the catRAPID algorithm that assesses the direct binding potential of proteins to a given RNA region. Among these specific SARS-CoV-2 RNA end interactors, we identified the pseudouridine synthase PUS7 that binds to both 5' and 3' ends of viral RNA, which harbor the canonical consensus sequence modified by PUS7. We corroborated our results through SARS-CoV-2 RNA analysis by nanopore direct RNA sequencing. Indeed, these PUS7 consensus regions were found highly modified on viral RNAs, as demonstrated by ionic current features that are significantly different compared to the unmodified in vitro transcribed RNA. Overall, our data map the specific host protein interactions of SARS-CoV-2 RNA and point to a role for cellular pseudouridine synthases and the post-transcriptional pseudouridine modifications in the viral life cycle.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-469860

ABSTRACT

The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested sub genomic RNAs used to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques do not detect the 5' cap, thus preventing reliable identification and quantification of full-length, coding transcript models. Here we used Nanopore ReCappable Sequencing (NRCeq), a new technique that can identify capped full-length RNAs, to assemble a complete annotation of SARS-CoV-2 sgRNAs and annotate the location of capping sites across the viral genome. We obtained robust estimates of sgRNA expression across cell lines and viral isolates and identified novel canonical and non-canonical sgRNAs, including one that uses a previously un-annotated leader-to-body junction site. The data generated in this work constitute a useful resource for the scientific community and provide important insights into the mechanisms that regulate the transcription of SARS-CoV-2 sgRNAs.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-455960

ABSTRACT

SARS-CoV-2 proximal origin is still unclear, limiting the possibility of foreseeing other spillover events with pandemic potential. Here we propose an evolutionary model based on the thorough dissection of SARS-CoV-2 and RaTG13 - the closest bat relative - spike dynamics, kinetics and binding to ACE2. Our results indicate that both spikes share nearly identical, high affinities for Rhinolophus affinis bat and human ACE2, pointing out to negligible species barriers directly related to receptor binding. Also, SARS-CoV-2 spike shows a higher degree of dynamics and kinetics optimization that favors ACE2 engagement. Therefore, we devise an affinity-independent evolutionary process that likely took place in R. affinis bats and limits the eventual involvement of other animal species in initiating the pandemic to the role of vector.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-440278

ABSTRACT

SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 (COVID-19) progression. Indeed, critically ill patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2-indipendent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 patients. Author summarySARS-CoV-2 pandemic has resulted in millions of infections and deaths worldwide, yet the role of host innate immune responses in COVID-19 pathogenesis remains only partially characterized. Innate immunity represents the first line of host defense against viruses. Upon viral recognition, the secretion of type I and III interferons (IFN) establishes the cellular state of viral resistance, and contributes to induce the specific adaptive immune responses. Moving from in vitro evidences on the protective role played by plasmacytoid dendritic cells (pDC)-released type I IFN in the early phase of SARS-CoV-2 infection, here we characterized ex vivo the pDC phenotype and the balance between anti-viral and pro-inflammatory cytokines of COVID-19 patients stratified according to disease severity. Our study confirms in COVID-19 the crucial and protective role of pDC/type I IFN axis, whose deeper understanding may contribute to the development of novel pharmacological strategies and/or host-directed therapies aimed at boosting pDC response since the early phases of SARS-CoV-2 infection.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-437173

ABSTRACT

The COVID-19 outbreak driven by SARS-CoV-2 has caused more than 2.5 million deaths globally, with the most severe cases characterized by over-exuberant production of immune-mediators, the nature of which is not fully understood. Interferons of the type I (IFN-I) or type III (IFN-III) families are potent antivirals, but their role in COVID-19 remains debated. Our analysis of gene and protein expression along the respiratory tract shows that IFNs, especially IFN-III, are over-represented in the lower airways of patients with severe COVID-19, while high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity; also, IFN expression varies with abundance of the cell types that produce them. Our data point to a dynamic process of inter- and intra-family production of IFNs in COVID-19, and suggest that IFNs play opposing roles at distinct anatomical sites.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20150375

ABSTRACT

Plenty of serologic tests for SARS-CoV-2 have been developed so far, thus documenting the importance of evaluating the relevant features of the immune response to this viral agent. The performance of these assays is currently under investigation. Amongst them, LIAISON(R) SARS-CoV-2 S1/S2 IgG by DiaSorin and Elecsys Anti-SARS-CoV-2 cobas(R) by Roche are currently used by laboratory medicine hospital departments in Italy and many other countries. In the present study, we have firstly compared two serologic tests on serum samples collected at two different time points from forty-six laboratory-confirmed COVID-19 subjects. Secondly, eighty-five negative serum samples collected before the SARS-CoV-2 pandemic were analyzed. Thirdly, possible correlations between antibody levels and the resulting neutralizing activity against a clinical isolate of SARS-CoV-2 were evaluated. Results revealed that both tests are endowed with low sensitivity on the day of hospital admission, which increased to 97.8 and 100% for samples collected after 15 days for DiaSorin and Roche tests, respectively. The specificity of the two tests ranges from 96.5 to 100%, respectively. Importantly, a poor direct correlation between antibody titers and neutralizing activity levels was evidenced in the present study.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20147140

ABSTRACT

The aim of this study is the characterization and genomic tracing by phylogenetic analyses of 59 new SARS-CoV-2 Italian isolates obtained from patients attending clinical centres in North and Central Italy until the end of April 2020. All but one of the newly characterized genomes belonged to the lineage B.1, the most frequently identified in European countries, including Italy. Only a single sequence was found to belong to lineage B. A mean of 6 nucleotide substitutions per viral genome was observed, without significant differences between synonymous and non-synonymous mutations, indicating genetic drift as a major source for virus evolution. tMRCA estimation confirmed the probable origin of the epidemic between the end of January and the beginning of February with a rapid increase in the number of infections between the end of February and mid-March. Since early February, an effective reproduction number (Re) greater than 1 was estimated, which then increased reaching the peak of 2.3 in early March, confirming the circulation of the virus before the first COVID-19 cases were documented. Continuous use of state-of-the-art methods for molecular surveillance is warranted to trace virus circulation and evolution and inform effective prevention and containment of future SARS-CoV-2 outbreaks.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-193193

ABSTRACT

Effective and economical measures are needed to either prevent or inhibit the replication of SARS-CoV-2, the causative agent of COVID-19, in the upper respiratory tract. As fumigation of vinegar at low concentration (0.34%) ameliorated the symptoms of mild SARS-CoV-2 infection, we tested in vitro the potential antiviral activity of vinegar and of its active component, acetic acid. We here demonstrate that both vinegar and acetic acid indeed strongly inactivate SARS-CoV-2 infectivity in Vero cells. Furthermore, vinegar treatment caused a 90% inhibition of the infectious titer when directly applied to a nasopharyngeal swab transfer medium of a COVID-19 patient. These effects were potentiated if conduced at a temperature of 45 {degrees}C vs. 37 {degrees}C, a condition that is transiently generated in the upper respiratory tract during fumigation. Our findings are consistent and extend the results of studies performed in the early and mid-20th century on the disinfectant capacity of organic acids and can provide an affordable home-made aid to prevent or contain SARS-CoV-2 infection of the upper respiratory tract.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-066761

ABSTRACT

The dependence of the host on the interaction of hundreds of extracellular proteins with the cell surface glycosaminoglycan heparan sulphate (HS) for the regulation of homeostasis is exploited by many microbial pathogens as a means of adherence and invasion. The closely related polysaccharide heparin, the widely used anticoagulant drug, which is structurally similar to HS and is a common experimental proxy, can be expected to mimic the properties of HS. Heparin prevents infection by a range of viruses if added exogenously, including S-associated coronavirus strain HSR1. Heparin prevents infection by a range of viruses if added exogenously, including S-associated coronavirus strain HSR1. Here, we show that the addition of heparin to Vero cells between 6.25 - 200 g.ml-1, which spans the concentration of heparin in therapeutic use, and inhibits invasion by SARS-CoV-2 at between 44 and 80%. We also demonstrate that heparin binds to the Spike (S1) protein receptor binding domain and induces a conformational change, illustrated by surface plasmon resonance and circular dichroism spectroscopy studies. The structural features of heparin on which this interaction depends were investigated using a library of heparin derivatives and size-defined fragments. Binding is more strongly dependent on the presence of 2-O or 6-O sulphation, and the consequent conformational consequences in the heparin structure, than on N-sulphation. A hexasaccharide is required for conformational changes to be induced in the secondary structure that are comparable to those that arise from heparin binding. Enoxaparin, a low molecular weight clinical anticoagulant, also binds the S1 RBD protein and induces conformational change. These findings have implications for the rapid development of a first-line therapeutic by repurposing heparin as well as for next-generation, tailor-made, GAG-based antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-014407

ABSTRACT

While the SARS-CoV-2 pandemic is hardly hitting the world, it is of extreme importance that significant in vitro observations guide the quick set up of clinical trials. In this study, we evidence that the anti-SARS-CoV2 activity of a clinically achievable hydroxychloroquine concentration is maximized only when administered before and after the infection of Vero E6 cells. This strongly suggests that only a combined prophylactic and therapeutic use of hydroxychloroquine may be effective in limiting viral replication in patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...