Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Mol Pharm ; 21(4): 1768-1776, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38381374

ABSTRACT

A better molecular understanding of the temperature-triggered drug release from lysolipid-based thermosensitive liposomes (LTSLs) is needed to overcome the recent setbacks in developing this important drug delivery system. Enhanced drug release was previously rationalized in terms of detergent-like effects of the lysolipid monostearyl lysophosphatidylcholine (MSPC), stabilizing local membrane defects upon LTSL lipid melting. This is highly surprising and here referred to as the 'lysolipid paradox,' because detergents usually induce the opposite effect─they cause leakage upon freezing, not melting. Here, we aim at better answers to (i) why lysolipid does not compromise drug retention upon storage of LTSLs in the gel phase, (ii) how lysolipids can enhance drug release from LTSLs upon lipid melting, and (iii) why LTSLs typically anneal after some time so that not all drug gets released. To this end, we studied the phase transitions of mixtures of dipalmitoylphosphatidylcholine (DPPC) and MSPC by a combination of differential scanning and pressure perturbation calorimetry and identified the phase structures with small- and wide-angle X-ray scattering (SAXS and WAXS). The key result is that LTSLs, which contain the standard amount of 10 mol % MSPC, are at a eutectic point when they release their cargo upon melting at about 41 °C. The eutectic present below 41 °C consists of a MSPC-depleted gel phase as well as small domains of a hydrocarbon chain interdigitated gel phase containing some 30 mol % MSPC. In these interdigitated domains, the lysolipid is stored safely without compromising membrane integrity. At the eutectic temperature, both the MSPC-depleted bilayer and interdigitated MSPC-rich domains melt at once to fluid bilayers, respectively. Intact, fluid membranes tolerate much less MSPC than interdigitated domains─where the latter have melted, the high local MSPC content causes transient pores. These pores allow for fast drug release. However, these pores disappear, and the membrane seals again as the MSPC distributes more evenly over the membrane so that its local concentration decreases below the pore-stabilizing threshold. We provide a pseudobinary phase diagram of the DPPC-MSPC system and structural and volumetric data for the interdigitated phase.


Subject(s)
Lipid Bilayers , Liposomes , Liposomes/chemistry , Lipid Bilayers/chemistry , Scattering, Small Angle , Calorimetry, Differential Scanning , X-Ray Diffraction , 1,2-Dipalmitoylphosphatidylcholine/chemistry
2.
Int J Pharm ; 653: 123894, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38350501

ABSTRACT

Polyethylene glycol (PEG)-stabilized lipodisks have emerged as innovatiive, promising nanocarriers for several classes of drugs. Prior research underscores the important role of lipid composition and preparation method in determining the lipodisk size, uniformity, and drug loading capacity. In this study, we investigate dual centrifugation (DC) as a novel technique for the production of PEG-stabilized lipodisks. Moreover, we explore the potential use of DC for the encapsulation of two model drugs, curcumin and doxorubicin, within the disks. Our results show that by a considerate choice of experimental conditions, DC can be used as a fast and straightforward means to produce small and homogenous lipodisks with a hydrodynamic diameter of 20-30 nm. Noteworthy, the technique works well for the production of both cholesterol-free and cholesterol-containing disks and does not require pre-mixing of the lipids in organic solvent. Furthermore, our investigations confirm the efficacy of DC in formulating curcumin and doxorubicin within these lipodisks. For doxorubicin, careful control and optimization of the experimental conditions resulted in formulations displaying an encouraging encapsulation efficiency of 84 % and a favourable drug-to-lipid ratio of 0.13 in the disks.


Subject(s)
Curcumin , Nanoparticles , Doxorubicin , Polyethylene Glycols , Solvents , Lipids
3.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38004385

ABSTRACT

Dual centrifugation (DC) is an innovative in-vial homogenization and in-vial nanomilling technique that has been in use for the preparation of liposomes for more than one decade. Since then, DC has continuously been developed for preparing various liposomes and other lipid nanoparticles including emulsions and solid lipid nanoparticles (SLNs) as well as polymersomes and nanocrystals. Improvements in equipment technology have been achieved over the past decade, so that DC is now on its way to becoming the quasi-standard for the simple, fast, and aseptic production of lipid nanoparticles and nanocrystals in small and medium batch sizes, including the possibility of simple and fast formulation screening or bedside preparations of therapeutic nanoparticles. More than 68 publications in which DC was used to produce nanoparticles have appeared since then, justifying an initial review of the use of DC for pharmaceutical nanotechnology.

4.
Pharmaceutics ; 15(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36840028

ABSTRACT

Dual centrifugation (DC) is a new and versatile technique for the preparation of liposomes by in-vial homogenization of lipid-water mixtures. Size, size distribution, and entrapping efficiencies are strongly dependent on the lipid concentration during DC-homogenization. In this study, we investigated the detailed structure of DC-made liposomes. To do so, an assay to determine the ratio of inner to total membrane surfaces of liposomes (inaccessible surface) was developed based on either time-resolved or steady-state fluorescence spectroscopy. In addition, cryogenic electron microscopy (cryo-EM) was used to confirm the lamellarity results and learn more about liposome morphology. One striking result leads to the possibility of producing a novel type of liposome-small multilamellar vesicles (SMVs) with low PDI, sizes of the order of 100 nm, and almost completely filled with bilayers. A second particularly important finding is that VPGs can be prepared to contain open bilayer structures that will close spontaneously when, after storage, more aqueous phase is added and liposomes are formed. Through this process, a drug can effectively be entrapped immediately before application. In addition, dual centrifugation at lower lipid concentrations is found to produce predominantly unilamellar vesicles.

5.
Biochem Biophys Res Commun ; 643: 186-191, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36621114

ABSTRACT

We investigated the effects of different lipids on the activity of the angiotensin II type 1 receptor (AT1R). As calcium plays a key role in the signaling of the AT1R, we used the calcium-sensitive fluorescence indicators fura-2 to detect intracellular calcium release upon stimulation with the agonist angiotensin II. At first sight, cells preincubated with Very low-density lipoprotein (VLDL) showed a reduced calcium release triggered by angiontensin II compared to untreated control. However, on closer examination, this result seemed to be an artifact. Incubation with VLDL reduced also the amount of intracellular fura-2, as measured by fluorescence in the isosbestic point. Additionally, the maximal obtainable ratio, obtained after complete saturation with calcium ions, was reduced in cells preincubated with VLDL. These findings rendered our initial results questionable. We report the results of our work and our suggestions regarding the experimental setup to contribute to the understanding of the interpretation of fura-2 measurements and to avoid erroneous conclusions.


Subject(s)
Calcium, Dietary , Calcium , Fura-2 , Lipids
6.
Pharmaceutics ; 13(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34959327

ABSTRACT

Dual centrifugation (DC) is a novel in-vial homogenization technique for the preparation of liposomes in small batch sizes under gentle and sterile conditions which allows encapsulation efficiencies (EE) for water soluble compounds of >50%. Since liposome size, size distribution (PDI), and EE depend on the lipid concentration used in the DC process, a screening method to find optimal lipid concentrations for a defined lipid composition was developed. Four lipid mixtures consisting of cholesterol, hydrogenated or non-hydrogenated egg PC, and/or PEG-DSPE were screened and suitable concentration ranges could be identified for optimal DC homogenization. In addition to the very fast and parallel liposome preparation of up to 40 samples, the screening process was further accelerated by the finding that DC generates homogeneously mixed liposomes from a macroscopic lipid mixture without the need to initially prepare a molecularly mixed lipid film from an organic solution of all components. This much simpler procedure even works for cholesterol containing lipid blends, which could be explained by a nano-milling of the cholesterol crystals during DC homogenization. Furthermore, EE determination was performed by time-resolved fluorescence measurements of calcein-loaded liposomes without removing the non-entrapped calcein. The new strategy allows the rapid characterization of a certain lipid composition for the preparation of liposomes within a working day.

7.
Int J Pharm ; 565: 187-198, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31063837

ABSTRACT

Various wet ball nanomilling-screening tools for poorly soluble APIs are available which differ in their milling principle, batch size and number of samples. Here, the transferability of results from screening (small to medium-scale) to pharmaceutical production (largescale) was investigated. Wet ball milling in a dual centrifuge (DC) (10-100 mg API, 40 samples in parallel) was used to identify stable nanoformulations. In addition different sized agitator bead mills were used for scale-up to industrial scales. DC-and small-scale agitator milling (AM) resulted in small and virtually identical API-particles. Additionally, similar API-particles were obtained using two different sized agitator bead mills (batch size 1.5 and 30 kg) and applying comparable specific grinding energies (SGE). The SGE used in the trials represents the grinding limit for this API-suspension. Using lower SGEs, AM results in larger API-particles. All used milling tools had no influence on the APIs crystal structure and wear of grinding media (Zr/Y) is low. The study confirmed the importance to choose the right formulation and process parameters, which positively affect grinding efficacy, particle size distribution and wear contamination. The excellent comparability of results obtained from DC-milling and AM significantly reduces the duration for successful and predictable formulation development.


Subject(s)
Nanoparticles/chemistry , Technology, Pharmaceutical , Centrifugation , Excipients/chemistry , Fenofibrate/chemistry , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure , Naproxen/chemistry , Polymers/chemistry , Surface-Active Agents/chemistry
8.
Lipids Health Dis ; 17(1): 49, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29540222

ABSTRACT

BACKGROUND: Preeclampsia is a life-threatening disease in pregnancy, and its complex pathomechanisms are poorly understood. In preeclampsia, lipid metabolism is substantially altered. In late onset preeclampsia, remnant removal disease like lipoprotein profiles have been observed. Lipid apheresis is currently being explored as a possible therapeutic approach to prolong preeclamptic pregnancies. Here, apheresis-induced changes in serum lipid parameters are analyzed in detail and their implications for preeclamptic lipid metabolism are discussed. METHODS: In the Freiburg H.E.L.P.-Apheresis Study, 6 early onset preeclamptic patients underwent repeated apheresis treatments. Serum lipids pre- and post-apheresis and during lipid rebound were analyzed in depth via ultracentrifugation to yield lipoprotein subclasses. RESULTS: The net elimination of Apolipoprotein B and plasma lipids was lower than theoretically expected. Lipids returned to previous pre-apheresis levels before the next apheresis even though apheresis was repeated within 2.9 ± 1.2 days. Apparent fractional catabolic rates and synthetic rates were substantially elevated, with fractional catabolic rates for Apolipoprotein B / LDL-cholesterol being 0.7 ± 0.3 / 0.4 ± 0.2 [day- 1] and synthetic rates being 26 ± 8 / 17 ± 8 [mg*kg- 1*day- 1]. The distribution of LDL-subclasses after apheresis shifted to larger buoyant LDL, while intermediate-density lipoprotein-levels remained unaffected, supporting the notion of an underlying remnant removal disorder in preeclampsia. CONCLUSION: Lipid metabolism seems to be highly accelerated in preeclampsia, likely outbalancing remnant removal mechanisms. Since cholesterol-rich lipoprotein remnants are able to accumulate in the vessel wall, remnant lipoproteins may contribute to the severe endothelial dysfunction observed in preeclampsia. TRIAL REGISTRATION: ClinicalTrails.gov, NCT01967355 .


Subject(s)
Cholesterol, LDL/blood , Cholesterol/blood , Lipid Metabolism , Lipoproteins/blood , Pre-Eclampsia/blood , Adult , Apolipoproteins B/blood , Blood Component Removal , Female , Humans , Pre-Eclampsia/pathology , Pregnancy , Triglycerides/blood
9.
Int J Pharm ; 530(1-2): 79-88, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28733242

ABSTRACT

The development of nanosuspensions of poorly soluble APIs takes a lot of time and high amount of active material is needed. In this publication the use of dual centrifugation (DC) for an effective and rapid API-nanomilling is described for the first time. DC differs from normal centrifugation by an additional rotation of the samples during centrifugation, resulting in a very fast and powerful movement of the samples inside the vials, which - in combination with milling beads - result in effective milling. DC-nanomilling was compared to conventional wet ball milling and results in same or even smaller particle sizes. Also drug concentrations up to 40% can be processed. The process is fast (typical 90min) and the temperature can be controlled. DC-nanomilling appears to be very gentle, experiments showed no change of the crystal structure during milling. Since batch sizes are very small (100-1000mg) and since 40 sample vials can be processed in parallel, DC is ideal for the screening of suitable polymer/surfactant combinations. Fenofibrate was used to investigate DC-nanomilling for formulation screening by applying a DoE-approach. The presented data also show that the results of DC-nanomilling experiments are highly comparable to the results obtained by common agitator mills.


Subject(s)
Centrifugation , Drug Compounding/methods , Nanotechnology , Chemistry, Pharmaceutical , Nanoparticles , Particle Size , Solubility , Suspensions
10.
Lipids Health Dis ; 16(1): 104, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28578704

ABSTRACT

BACKGROUND: Like many other cancer patients, most pancreatic carcinoma patients suffer from severe weight loss. As shown in numerous studies with fish oil (FO) supplementation, a minimum daily intake of 1.5 g n-3-fatty acids (n-3-FA) contributes to weight stabilization and improvement of quality of life (QoL) of cancer patients. Given n-3-FA not as triglycerides (FO), but mainly bound to marine phospholipids (MPL), weight stabilization and improvement of QoL has already been seen at much lower doses of n-3-FA (0,3 g), and MPL were much better tolerated. The objective of this double-blind randomized controlled trial was to compare low dose MPL and FO formulations, which had the same n-3-FA amount and composition, on weight and appetite stabilization, global health enhancement (QoL), and plasma FA-profiles in patients suffering from pancreatic cancer. METHODS: Sixty pancreatic cancer patients were included into the study and randomized to take either FO- or MPL supplementation. Patients were treated with 0.3 g of n-3-fatty acids per day over six weeks. Since the n-3-FA content of FO is usually higher than that of MPL, FO was diluted with 40% of medium chain triglycerides (MCT) to achieve the same capsule size in both intervention groups and therefore assure blinding. Routine blood parameters, lipid profiles, body weight, and appetite were measured before and after intervention. Patient compliance was assessed through a patient diary. Quality of life and nutritional habits were assessed with validated questionnaires (EORTC-QLQ-C30, PAN26). Thirty one patients finalized the study protocol and were analyzed (per-protocol-analysis). RESULTS: Intervention with low dose n-3-FAs, either as FO or MPL supplementation, resulted in similar and promising weight and appetite stabilization in pancreatic cancer patients. MPL capsules were slightly better tolerated and showed fewer side effects, when compared to FO supplementation. CONCLUSION: The similar effects between both interventions were unexpected but reliable, since the MPL and FO formulations caused identical increases of n-3-FAs in plasma lipids of included patients after supplementation. The effects of FO with very low n-3-FA content might be explained by the addition of MCT. The results of this study suggest the need for further investigations of marine phospholipids for the improvement of QoL of cancer patients, optionally in combination with MCT.


Subject(s)
Cachexia/diet therapy , Fatty Acids, Omega-3/administration & dosage , Fish Oils/administration & dosage , Pancreatic Neoplasms/diet therapy , Adult , Body Weight , Cachexia/metabolism , Cachexia/pathology , Dietary Fats, Unsaturated/metabolism , Dietary Supplements , Double-Blind Method , Female , Humans , Male , Middle Aged , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phospholipids/administration & dosage , Quality of Life
11.
FEBS Open Bio ; 6(12): 1297-1309, 2016 12.
Article in English | MEDLINE | ID: mdl-28255537

ABSTRACT

Lysophophatidylcholine (LysoPC) is an abundant constituent in human plasma. Patients with malignant cancer diseases have attenuated LysoPC plasma levels, and thus LysoPC has been examined as a metabolic biomarker for cancer prediction. Preclinical studies have shown that solid tumor cells drastically degrade LysoPCs by incorporating their free fatty acids into cell membrane phospholipids. In this way, LysoPC C18:0 reduced the metastatic spread of murine melanoma B16.F10 cells in mice. Although membrane rigidification may have a key role in the attenuation of metastasis, evidence for this has yet to be shown. Therefore, the present study aimed to determine how LysoPC reduces the metastatic capacity of B16.F10 cells. Following cellular preincubation with LysoPC C18:0 at increasing concentrations and lengths of time, cell migration was most significantly attenuated with 450 µm LysoPC C18:0 at 72 h. Biosensor measurements suggest that, despite their abundance in B16.F10 cells, LysoPC-sensitive G protein-coupled receptors do not appear to contribute to this effect. Instead, the attenuated migration appears to result from changes in cell membrane properties and their effect on underlying signaling pathways, most likely the formation of focal adhesion complexes. Treatment with 450 µm LysoPC C18:0 activates protein kinase C (PKC)δ to phosphorylate syndecan-4, accompanied by deactivation of PKCα. Subsequently, focal adhesion complex formation was attenuated, as confirmed by the reduced activity of focal adhesion kinase (FAK). Interestingly, 450 µm LysoPC C18:1 did not affect FAK activity, explaining its lower propensity to affect migration and metastasis. Therefore, membrane rigidification by LysoPC C18:0 appears to prevent the formation of focal adhesion complexes, thus affecting integrin activity as a key for metastatic melanoma spread.

13.
Lipids Health Dis ; 14: 69, 2015 Jul 11.
Article in English | MEDLINE | ID: mdl-26162894

ABSTRACT

BACKGROUND: Metastasis is the leading cause of mortality in malignant diseases. Patients with metastasis often show reduced Lysophosphatidylcholine (LysoPC) plasma levels and treatment of metastatic tumour cells with saturated LysoPC species reduced their metastatic potential in vivo in mouse experiments. To provide a first insight into the interplay of tumour cells and LysoPC, the interactions of ten solid epithelial tumour cell lines and six leukaemic cell lines with saturated and mono-unsaturated LysoPC species were explored. METHODS: LysoPC metabolism by the different tumour cells was investigated by a combination of cell culture assays, GC and MS techniques. Functional consequences of changed membrane properties were followed microscopically by detecting lateral lipid diffusion or cellular migration. Experimental metastasis studies in mice were performed after pretreatment of B16.F10 melanoma cells with LysoPC and FFA, respectively. RESULTS: In contrast to the leukaemic cells, all solid tumour cells show a very fast extracellular degradation of the LysoPC species to free fatty acids (FFA) and glycerophosphocholine. We provide evidence that the formerly LysoPC bound FFA were rapidly incorporated into the cellular phospholipids, thereby changing the FA-compositions accordingly. A massive increase of the neutral lipid amount was observed, inducing the formation of lipid droplets. Saturated LysoPC and to a lesser extent also mono-unsaturated LysoPC increased the cell membrane rigidity, which is assumed to alter cellular functions involved in metastasis. According to that, saturated and mono-unsaturated LysoPC as well as the respective FFA reduced the metastatic potential of B16.F10 cells in mice. Application of high doses of liposomes mainly consisting of saturated PC was shown to be a suitable way to strongly increase the plasma level of saturated LysoPC in mice. CONCLUSION: These data show that solid tumours display a high activity to hydrolyse LysoPC followed by a very rapid uptake of the resulting FFA; a mechanistic model is provided. In contrast to the physiological mix of LysoPC species, saturated and mono-unsaturated LysoPC alone apparently attenuate the metastatic activity of tumours and the artificial increase of saturated and mono-unsaturated LysoPC in plasma appears as novel therapeutic approach to interfere with metastasis.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Fatty Acids/metabolism , Lysophosphatidylcholines/metabolism , Molecular Targeted Therapy , Neoplasm Metastasis/prevention & control , Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Movement , Chemical Fractionation , Humans , Lipid Droplets/metabolism , Lysophosphatidylcholines/blood , Male , Membrane Fluidity , Mice, Inbred C57BL , Models, Biological , Neoplasms/blood , Neoplasms/pathology
14.
Biomacromolecules ; 15(7): 2440-8, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24805163

ABSTRACT

Aiming at controlled modification of liposomal surface structures, we describe a postpreparational approach for surface derivatization of a new type of multifunctional, sterically stabilized liposomes. Application of dual centrifugation (DC) resulted in high encapsulation efficiencies above 50% at very small batch sizes with a total volume of 150 µL, which were conductive to fast and efficient optimization of variegated surface modification reactions. Cholesterol-polymer amphiphiles, including complex hyperbranched polyether structures bearing 1-4 terminal alkynes, were used in DC formulations to provide steric stabilization. The alkyne moieties were explored as anchors for the conjugation of small molecules to the liposomal surface via click chemistry, binding 350-450 fluorophores per liposome as examples for surface active molecules. Using Förster resonance energy transfer (FRET) spectroscopy, the conjugation reaction as well as the uptake of FRET-labeled liposomes by RBE4 cells was monitored, and the distribution of the fluorescent lipids among cellular structures and membranes could be studied. Thus, the combination of clickable hyperbranched amphiphiles and dual centrifugation provides access to well-defined liposomal formulations with a variety of surface moieties.


Subject(s)
Doxorubicin/analogs & derivatives , Polymers/pharmacology , Alkynes/chemistry , Animals , Brain/cytology , Brain/drug effects , Brain/metabolism , Cell Line , Click Chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Fluorescence Resonance Energy Transfer , Liposomes , Microscopy, Confocal , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Polymers/chemistry , Rats
15.
Int Sch Res Notices ; 2014: 249204, 2014.
Article in English | MEDLINE | ID: mdl-27351011

ABSTRACT

High intake of omega-3 fatty acids (n-3 FAs) from fish has shown to reduce metastatic progression of prostate cancer. This clinical trial investigated the influence of high n-3 FA intake (marine phospholipids, MPL) on the FA composition of blood lipids, lysophosphatidylcholine (LPC), and on lipoproteins in prostate cancer patients and elderly men without prostate cancer. MPL supplementation resulted in a significant increase of n-3 FAs (eicosapentaenoic and docosahexaenoic acid) in blood lipids, while arachidonic acid (n-6 FA) decreased significantly. Low density lipoprotein (LDL) and high density lipoprotein (HDL) increased significantly, but the LDL increase was observed only in subjects with an inactive tumour. Similarly, LPC plasma concentration increased significantly only in patients without tumour. The missing increase of LDL and LPC after MPL supplementation in patients with actively growing (metastasizing) prostate cancer suggests that tumour cells have an elevated demand for LDL and LPC. Due to the MPL-induced increase of n-3 FAs in these blood lipids, it can be assumed that especially actively growing and metastasizing prostate cancer cells are provided with elevated amounts of these antimetastatic n-3 FAs. A hypothetic model explaining the lower incidence of metastatic progression in prostate cancer patients with high fish consumption is presented.

16.
Lipids Health Dis ; 11: 3, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22221489

ABSTRACT

Beneficial effects of dietary phospholipids (PLs) have been mentioned since the early 1900's in relation to different illnesses and symptoms, e.g. coronary heart disease, inflammation or cancer. This article gives a summary of the most common therapeutic uses of dietary PLs to provide an overview of their approved and proposed benefits; and to identify further investigational needs.From the majority of the studies it became evident that dietary PLs have a positive impact in several diseases, apparently without severe side effects. Furthermore, they were shown to reduce side effects of some drugs. Both effects can partially be explained by the fact that PL are highly effective in delivering their fatty acid (FA) residues for incorporation into the membranes of cells involved in different diseases, e.g. immune or cancer cells. The altered membrane composition is assumed to have effects on the activity of membrane proteins (e.g. receptors) by affecting the microstructure of membranes and, therefore, the characteristics of the cellular membrane, e.g. of lipid rafts, or by influencing the biosynthesis of FA derived lipid second messengers. However, since the FAs originally bound to the applied PLs are increased in the cellular membrane after their consumption or supplementation, the FA composition of the PL and thus the type of PL is crucial for its effect. Here, we have reviewed the effects of PL from soy, egg yolk, milk and marine sources. Most studies have been performed in vitro or in animals and only limited evidence is available for the benefit of PL supplementation in humans. More research is needed to understand the impact of PL supplementation and confirm its health benefits.


Subject(s)
Phospholipids/pharmacology , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Central Nervous System/growth & development , Dietary Supplements , Dyslipidemias/complications , Dyslipidemias/drug therapy , Humans , Hypolipidemic Agents/metabolism , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Immune System/drug effects , Liver Diseases/drug therapy , Neoplasms/drug therapy , Nervous System Diseases/drug therapy , Phospholipids/metabolism , Phospholipids/therapeutic use
17.
Mol Cancer Ther ; 10(1): 186-97, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21220501

ABSTRACT

Lysophosphatidylcholine (LysoPC) is an important intermediate in degradation and biosynthesis of phosphatidylcholine (PC). Reduced plasma LysoPC levels observed in patients with advanced cancer indicate a deregulation of LysoPC metabolism in metastasis. Recent data showed strong antimetastatic effects of liposomes consisting of saturated PC in a murine pancreatic metastasis model. LysoPC, generated from saturated PC after accumulation of the liposomes in tumor tissue, might be contributing to these effects. Examining effects of high local concentrations of saturated LysoPC and investigating potential molecular mechanisms, fast removal of saturated LysoPC from medium by murine B16.F10 melanoma cells and radical shifts in tumor cell membrane fatty acid (FA) composition toward saturated FAs were observed in vitro. Scanning electron microscopy revealed remarkable morphologic surface changes of LysoPC-treated tumor cells, probably causing their impaired migratory ability on fibronectin. A LysoPC concentration exceeding a threshold of about 400 µmol/L, slightly above physiologic levels, strongly reduced VLA-4-mediated binding of B16.F10 cells to VCAM-1 as well as P-selectin-dependent interaction with activated platelets, although expression levels were not altered. These findings were reflected in a syngenic intravenous lung invasion model using repeatedly ex vivo LysoPC-treated (450 µmol/L) B16.F10 cells, resulting in significantly reduced lung metastasis-like lesions (-48.3%, P = 0.006). Prior application of 50 IU unfractionated heparin further reduced lung invasion (-81.6%, P = 0.043). Our work shows for the first time that saturated LysoPC in high concentrations reduces melanoma cell adhesion in vitro and hematogeneous dissemination in vivo by direct ex vivo tumor cell targeting.


Subject(s)
Integrin alpha4beta1/metabolism , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Lysophosphatidylcholines/pharmacology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/secondary , P-Selectin/metabolism , Animals , Cell Adhesion/drug effects , Cell Membrane/drug effects , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , P-Selectin/pharmacology , Recombinant Proteins/pharmacology
18.
Cancers (Basel) ; 3(2): 2679-95, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-24212827

ABSTRACT

The most fatal outcomes of prostate carcinoma (PCa) result from hormone-refractory variants of the tumor, especially from metastatic spread rather than from primary tumor burden. The goal of the study was to establish and apply rat MAT-Lu prostate cancer tumor models for improved non-invasive live follow up of tumor growth and metastasis by in vivo bioluminescence. We established luciferase transduced MAT-Lu rat PCa cells and studied tumor growth and metastatic processes in an ectopic as well as orthotopic setting. An intravenous bolus treatment with doxorubicin was used to demonstrate the basic applicability of in vivo imaging to follow up therapeutic intervention in these models. In vitro analysis of tissue homogenates confirmed major metastatic spread of subcutaneous tumors into the lung. Our sensitive method, however, for the first time detects metastasis also in lymph node (11/24), spleen (3/24), kidney (4/24), liver (5/24), and bone tissue (femur or spinal cord - 5/20 and 12/20, respectively). Preliminary data of orthotopic implantation (three animals) showed metastatic invasion to investigated organs in all animals but with varying preference (e.g., to lymph nodes). Intravenous bolus treatment of MAT-Lu PCa with doxorubicin reduced subcutaneous tumor growth by about 50% and the number of animals affected by metastatic lesions in lymph nodes (0/4), lung (3/6) or lumbar spine (0/2), as determined by in vivo imaging and in vitro analysis. Additionally, the possible applicability of the luciferase transduced MAT-Lu model(s) to study basic principles of metronomic therapies via jugular vein catheter, using newly established active microport pumping systems, is presented.

19.
Support Care Cancer ; 18(2): 159-70, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19404684

ABSTRACT

GOALS OF WORK: Advanced tumor disease very often evokes excessive loss of body weight. Among others, fish oil or marine fatty acid ethyl esters were investigated for treatment of cancer cachexia with controversial results. In this study, a new formulation of marine fatty acids was investigated, the marine phospholipids, with more than 50% of phospholipid-bound fatty acids being eicosapentaenoic and docosahexaenoic acid. MATERIALS AND METHODS: Thirty-one tumor patients with various tumor entities suffering from weight loss were asked to take marine phospholipids (1.5 g/day) as softgel capsules for a period of 6 weeks. Compliance, body weight, appetite, and quality of life as well as the fatty acid profile in plasma and blood cells were monitored; 17 patients could be analyzed. MAIN RESULTS: Marine phospholipids were very well accepted; low-dose supplementation resulted in a significant increase of eicosapentaenoic and docosahexaenoic acid in plasma phospholipids; therefore, significantly reducing the n-6 to n-3 fatty acid ratio. A stabilization of body weight was achieved (median weight change of +0.6% after 6 weeks), while appetite and quality of life improved. CONCLUSIONS: These promising first results encourage further investigation of marine phospholipids in cancer care.


Subject(s)
Cachexia/prevention & control , Fish Oils/administration & dosage , Neoplasms/complications , Phospholipids/administration & dosage , Weight Loss/drug effects , Administration, Oral , Body Weight/drug effects , Cachexia/blood , Capsules , Dietary Supplements , Fatty Acids/blood , Female , Humans , Interleukin-1/blood , Interleukin-6/blood , Male , Middle Aged , Nutritional Status , Phospholipids/blood , Quality of Life
20.
Methods Mol Biol ; 606: 439-55, 2010.
Article in English | MEDLINE | ID: mdl-20013414

ABSTRACT

By monitoring the efficiency of fluorescence resonance energy transfer of dyes attached to the different strands of siRNA, the structural integrity of the latter can be traced inside cells. Here, the experimental details of dye-labeled siRNA construction, tissue culture, and transfection with liposomally formulated siRNAs are given, as well as the conditions for confocal microscopy and an algorithm allowing the visualization of intact siRNA after image data treatment. The method allows rapid screening of different liposomal siRNA formulations, obtained by small scale dual asymmetric centrifugation with high entrapping efficiency.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Liposomes , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/analysis , Animals , Cell Line , Endothelial Cells/cytology , Fluorescence Resonance Energy Transfer/economics , Fluorescent Dyes/analysis , Humans , Liposomes/chemistry , Microinjections , Rats , Tissue Fixation , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL