Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-23841221

ABSTRACT

The many effects of the African medicinal herb Desmodium adscendens were studied in the 1980s and 1990s. In spite of this, a comprehensive analytical protocol for the quality control of its constituents (soyasaponins, alkaloids and flavonoids) has not yet been formulated and reported. This study deals with the optimization of extraction conditions from the plant and qualitative identification of the constituents by HPLC-diode array UV and multistage mass spectrometry. Plant constituents were extracted from leaves by liquid-liquid and solid matrix dispersion extraction. Separation was achieved via RP-C18 liquid chromatographywith UV and MS(n) detection and mass spectrometry analysis was conducted by electrospray ionization ion trap or orbitrap mass spectrometry. High resolution mass spectrometry (HRMS) was used for structural identification of active molecules relating to soyasaponins and alkaloids. The flavonoid fragmentations were preliminarily studied by HRMS in order to accurately characterize the more common neutral losses. However, the high number of isomeric species induced us to make recourse to a more extended chromatographic separation in order to enable useful tandem mass spectrometry and ultraviolet spectral interpretation to propose a reasonable chemical classification of these polyphenols. 35 compounds of this class were identified herein with respect to the five reported in literature in this way we made up a comprehensive protocol for the qualitative analysis of the high complexity content of this plant. This result paves the way for both reliable quality control of potential phytochemical medicaments and possible future systematic clinical studies.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fabaceae/chemistry , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Alkaloids/analysis , Alkaloids/chemistry , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/analysis , Oleanolic Acid/chemistry , Saponins/analysis , Saponins/chemistry , Spectrophotometry, Ultraviolet/methods
2.
Sci Total Environ ; 426: 281-8, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22503675

ABSTRACT

The role played by iron oxides (goethite and akaganeite) and iron(II)/(III) species as photo-sensitizers toward the transformation of organic matter was examined in saline water using phenol as a model molecule. The study was carried out in NaCl 0.7 M solution at pH 8, artificial (ASW) and natural (NSW) seawater, in a device simulating solar light spectrum and intensity. Under illumination phenol decomposition occurs in all the investigated cases. Conversely, dark experiments show that no reaction takes place, implying that phenol transformation is a light- activated process. Following the addition of Fe(II) ions to aerated solutions, Fe(II) is easily oxidized to Fe(III) and hydrogen peroxide is formed. Regardless of the addition of Fe(II) or Fe(III) ions, photo-activated degradation is mediated by Fe(III) species. Several (and different) hydroxylated and halogenated intermediates were identified. In ASW, akaganeite promotes the formation of ortho and para chloro derivatives (2- and 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol), while goethite induces the formation of 3-chlorophenol and bromophenols. Conversely, Fe(II) or Fe(III) addition causes the formation of 3- and 4-chlorophenol and 2,3- or 3,4-dichlorophenol. 4-Bromophenol was only identified when irradiating Fe(II) spiked solutions. Natural seawater sampled in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated. Phenol photo-induced transformation in NSW mediated by natural photosensitizers occurs and leads to the formation of numerous halophenols, condensed products and nitrophenols. When NSW is spiked with phenol and iron oxides, Fe(II) or Fe(III), halophenols production is enhanced. A close analogy exists between Fe(III), Fe(II)/goethite in ASW and NSW products. Different halophenols production in the natural seawater samples depends on Fe(II)/goethite (above all for 3-chlorophenol, 2,3-dichlorophenol and 4-bromophenol formation) and on Fe(III) colloidal species (3-chlorophenol).


Subject(s)
Ferric Compounds/chemistry , Iron/chemistry , Phenol/chemistry , Seawater/chemistry , Oxidation-Reduction , Phenol/analysis , Photochemical Processes
3.
Sci Total Environ ; 398(1-3): 196-202, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18452974

ABSTRACT

Natural seawater (NSW) sampled in March and June 2007 in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated in a device simulating solar light spectrum and intensity. Opposite to the case of artificial seawater, for which phenol is slightly degraded by direct photolysis, in NSW the phenol degradation mediated by natural photosensitizers occurs, forming several secondary pollutants, including hydroxyderivatives (1,4-benzoquinone, resorcinol), three chlorophenol isomers, 2,3-dichlorophenol, 2- and 4-bromophenol, 2- and 4-nitrophenol, and several condensed products (2 and 4-phenoxyphenol, 2,2'-, 4,4'- and 2,4-bisphenol). These compounds are toxic to bacteria and other living organisms. Ecotoxicologic effect has been evaluated by using the Vibrio Fischeri luminescent bacteria assay. This technique uses marine organisms, and it is therefore well suited for the study on marine samples. A correlation exists between the intermediates evolution and the toxicity profile, as the largest toxicity is observed when compounds with the lower EC50 (halophenols, phenoxyphenols) are formed at higher concentration.


Subject(s)
Aliivibrio fischeri/drug effects , Phenols/toxicity , Sunlight , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/metabolism , Luminescent Measurements , Phenols/radiation effects , Seawater , Water Pollutants, Chemical/radiation effects
4.
Rapid Commun Mass Spectrom ; 20(2): 131-6, 2006.
Article in English | MEDLINE | ID: mdl-16331747

ABSTRACT

Salvinorin A is the most potent naturally occurring hallucinogen known and rivals synthetic LSD in potency. Structurally it belongs to the neoclerodane diterpenoids, and it is the only known non-nitrogenous kappa-opioid-selective agonist. Salvia divinorum (Diviner's sage) is a member of the mint family that was used in ancient Mexican traditional practices. Today it is widely cultivated in Europe as a recreational marijuana substitute; it is illegal to buy, sell or possess the plant or the active principle in some countries. Six different salvinorins and three divinatorins have been isolated from Salvia divinorum leaves. The ion fragmentation, separation and quantitation of these diterpenes by liquid chromatography/electrospray ionization multistage mass spectrometry (LC/ESI-MS(n)) are described. The importance of LC in herbal extract determination and the chemical diagnostic power of MS(n) in the analysis of classes of natural organic products are discussed.


Subject(s)
Chromatography, Liquid/methods , Illicit Drugs/analysis , Plant Leaves/chemistry , Salvia/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Substance Abuse Detection/methods , Diterpenes/analysis , Diterpenes, Clerodane/analysis , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...