Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(26): 17719-17727, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38899979

ABSTRACT

Selectivity in organic chemistry is generally presumed to arise from energy differences between competing selectivity-determining transition states. However, in cases where static density functional theory (DFT) fails to reproduce experimental product distributions, dynamic effects can be examined to understand the behavior of more complex reaction systems. Previously, we reported a method for nitrogen deletion of secondary amines which relies on the formation of isodiazene intermediates that subsequently extrude dinitrogen with concomitant C-C bond formation via a caged diradical. Herein, a detailed mechanistic analysis of the nitrogen deletion of 1-aryl-tetrahydroisoquinolines is presented, suggesting that in this system the previously determined diradical mechanism undergoes dynamically controlled partitioning to both the normal 1,5-coupling product and an unexpected spirocyclic dearomatized intermediate, which converges to the expected indane by an unusually facile 1,3-sigmatropic rearrangement. This mechanism is not reproduced by static DFT but is supported by quasi-classical molecular dynamics calculations and unifies several unusual observations in this system, including partial chirality transfer, nonstatistical isotopic scrambling at the ethylene bridge, the isolation of spirocyclic dearomatized species in a related heterocyclic series, and the observation that introduction of an 8-substituent dramatically improves enantiospecificity.

2.
Angew Chem Int Ed Engl ; 60(31): 16932-16936, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34046992

ABSTRACT

This study demonstrates the feasibility and inherent benefits of combining two distinct asymmetric transition-metal-catalyzed reactions in one pot. The reported transformation features a Pd-catalyzed asymmetric allylic alkylation and a Rh-catalyzed enantioselective 1,4-conjugate addition, effectively converting simple allyl enol carbonate precursors into enantioenriched cyclic ketones with two remote stereocenters. Despite the anticipated challenges associated with controlling stereoselectivity in such a complex system, the products are obtained in enantiomeric excesses ranging up to >99 % ee, exceeding those obtained from either of the individual asymmetric reactions. In addition, since the stereoselectivity of both steps is under catalyst control, this one-pot reaction is enantio- and diastereodivergent, enabling facile access to all stereoisomers from the same set of starting materials.

3.
Angew Chem Int Ed Engl ; 57(39): 12925-12929, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-30113123

ABSTRACT

Despite being one of the most important and frequently run chemical reactions, the synthesis of amide bonds is accomplished primarily by wasteful methods that proceed by stoichiometric activation of one of the starting materials. We report a nickel-catalyzed procedure that can enable diverse amides to be synthesized from abundant methyl ester starting materials, producing only volatile alcohol as a stoichiometric waste product. In contrast to acid- and base-mediated amidations, the reaction is proposed to proceed by a neutral cross coupling-type mechanism, opening up new opportunities for direct, efficient, chemoselective synthesis.

4.
Org Lett ; 20(13): 4094-4098, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29939758

ABSTRACT

The Pd-catalyzed cross-coupling of phenyl esters and alkyl boranes is disclosed. Two reaction modes are rendered accessible in a selective fashion by interchange of the catalyst. With a Pd-NHC system, alkyl ketones can be prepared in good yields via a Suzuki-Miyaura reaction proceeding by activation of the C(acyl)-O bond. Use of a Pd-dcype catalyst enables alkylated arenes to be synthesized by a modified pathway with extrusion of CO. Applications of this divergent coupling strategy and the origin of the switchable selectivity are discussed.

5.
Org Lett ; 18(20): 5312-5315, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27696884

ABSTRACT

The Kumada-Corriu reaction is a powerful tool for C-C bond formation, but is seldom utilized due to perceived chemoselectivity issues. Herein, we demonstrate that high-yielding couplings can occur in the presence of many electrophilic and heterocyclic functional groups. Our strategy is mechanically based, matching oxidative addition rates with the rate of syringe pump addition of the Grignard reagent. The mechanistic reason for the effectiveness of this strategy is uncovered by continuous-infusion ESI-MS studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...