Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 133(14): 144111, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20949991

ABSTRACT

In this paper a detailed investigation of the basis set convergence for the calculation of relativistic electron densities at the position of finite-sized atomic nuclei is presented. The development of Gauss-type basis sets for such electron densities is reported and the effect of different contraction schemes is studied. Results are then presented for picture-change corrected calculations based on the Douglas-Kroll-Hess Hamiltonian. Moreover, the role of electron correlation, the effect of the numerical integration accuracy in density functional calculations, and the convergence with respect to the order of the Douglas-Kroll-Hess Hamiltonian and the picture-change-transformed property operator are studied.

2.
J Phys Chem A ; 112(7): 1666-72, 2008 Feb 21.
Article in English | MEDLINE | ID: mdl-18229904

ABSTRACT

Second-order scalar-relativistic Douglas-Kroll-Hess density functional calculations of the electric field gradient, including an analytic correction of the picture change error, were performed for 34 tin compounds of which molecular structures and 119Sn Mössbauer spectroscopy parameters are experimentally known. The components of the diagonalized electric field gradient tensor, Vxx, Vyy, Vzz, were used to determine the quantity V, which is proportional to the nuclear quadrupole splitting parameter DeltaE. The slope of the linear correlation plot of the experimentally determined DeltaE parameter versus the corresponding calculated V data allowed us to obtain an absolute value of the nuclear quadrupole moment Q of 119Sn equal to Q = 13.2 +/- 0.1 fm2. This is about 11% larger than the picture-change-error-affected value and in good agreement with previous estimates of the picture change error in compounds of similar atomic charge. Moreover, despite the variety of the tin compounds considered in this study, the new result is in excellent agreement with the previously determined most accurate value of Q for 119Sn of Q = 12.8 +/- 0.7 fm2, but with a noticeably narrower error bar. The reliability of the calibration method in the calculation of the DeltaE parameter of tin compounds is within a margin of +/-0.3 mm s-1 when compared to experimental data and does not depend on the inclusion of the picture change correction in the density functional calculations but is essentially determined by the use of an atomic natural orbital relativistic core-correlated basis set for the description of the core electron density. The results obtained suggest that the present picture-change-corrected Douglas-Kroll-Hess approach provides reliable electric field gradients in the case of closed-shell metal compounds involving elements up to the fifth row of the periodic table for which spin-orbit coupling is negligible.

3.
J Chem Phys ; 127(7): 074105, 2007 Aug 21.
Article in English | MEDLINE | ID: mdl-17718604

ABSTRACT

In this work we present a comprehensive study of analytical electric field gradients in hydrogen halides calculated within the high-order Douglas-Kroll-Hess (DKH) scalar-relativistic approach taking picture-change effects analytically into account. We demonstrate the technical feasibility and reliability of a high-order DKH unitary transformation for the property integrals. The convergence behavior of the DKH property expansion is discussed close to the basis set limit and conditions ensuring picture-change-corrected results are determined. Numerical results are presented, which show that the DKH property expansion converges rapidly toward the reference values provided by four-component methods. This shows that in closed-shell cases, the scalar-relativistic DKH(2,2) approach which is of second order in the external potential for both orbitals and property operator yields a remarkable accuracy. As a parameter-dependence-free high-order DKH model, we recommend DKH(4,3). Moreover, the effect of a finite-nucleus model, different parametrization schemes for the unitary matrices, and the reliability of standard basis sets are investigated.

4.
J Chem Theory Comput ; 3(6): 2182-97, 2007 Nov.
Article in English | MEDLINE | ID: mdl-26636211

ABSTRACT

The topological analysis of electron densities obtained either from X-ray diffraction experiments or from quantum chemical calculations provides detailed insight into the electronic structure of atoms and molecules. Of particular interest is the study of compounds containing (heavy) transition-metal elements, which is still a challenge for experiment as well as from a quantum-chemical point of view. Accurate calculations need to take relativistic effects into account explicitly. Regarding the valence electron density distribution, these effects are often only included indirectly through relativistic effective core potentials. But as different variants of relativistic Hamiltonians have been developed all-electron calculations of heavy elements in combination with various electronic structure methods are feasible. Yet, there exists no systematic study of the topology of the total electron density distribution calculated in different relativistic approximations. In this work we therefore compare relativistic Hamiltonians with respect to their effect on the electron density in terms of a topological analysis. The Hamiltonians chosen are the four-component Dirac-Coulomb, the quasi-relativistic two-component zeroth-order regular approximation, and the scalar-relativistic Douglas-Kroll-Hess operators.

5.
Chemphyschem ; 7(2): 414-20, 2006 Feb 13.
Article in English | MEDLINE | ID: mdl-16389599

ABSTRACT

The applicability of a UV micro-Raman setup was assessed for the rapid identification of fibrous asbestos minerals using 257 and 244 nm laser light for excitation. Raman spectra were obtained from six asbestos reference standards belonging to two basic structural groups: the serpentines (chrysotile) and the amphiboles (crocidolite, tremolite, amosite, anthophyllite, and actinolite). The UV Raman spectra reported here for the first time are free from fluorescence, which is especially helpful in assessing the hydroxyl-stretching vibrations. The spectra exhibit sharp bands characteristic of each asbestos species, which can be used for the unambiguous identification of known and unknown asbestos fibres. Evident changes of the relative band intensities sensitively reflect the chemical substitutions that typically occur in asbestos minerals. The elemental composition of the asbestos reference samples was analysed by using a scanning electron microscope equipped with an energy-dispersive X-ray (EDX) spectrometer. The discussion of the experimental results in terms of EDX analysis sheds new light on the structural and vibrational consequences of cation distribution in asbestos minerals.

SELECTION OF CITATIONS
SEARCH DETAIL
...