Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Cardiovasc Res ; 120(3): 318-328, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38381113

ABSTRACT

AIMS: The adaptive immune response plays an important role in atherosclerosis. In response to a high-fat/high-cholesterol (HF/HC) diet, marginal zone B (MZB) cells activate an atheroprotective programme by regulating the differentiation and accumulation of 'poorly differentiated' T follicular helper (Tfh) cells. On the other hand, Tfh cells activate the germinal centre response, which promotes atherosclerosis through the production of class-switched high-affinity antibodies. We therefore investigated the direct role of Tfh cells and the role of IL18 in Tfh differentiation in atherosclerosis. METHODS AND RESULTS: We generated atherosclerotic mouse models with selective genetic deletion of Tfh cells, MZB cells, or IL18 signalling in Tfh cells. Surprisingly, mice lacking Tfh cells had increased atherosclerosis. Lack of Tfh not only reduced class-switched IgG antibodies against oxidation-specific epitopes (OSEs) but also reduced atheroprotective natural IgM-type anti-phosphorylcholine (PC) antibodies, despite no alteration of natural B1 cells. Moreover, the absence of Tfh cells was associated with an accumulation of MZB cells with substantially reduced ability to secrete antibodies. In the same manner, MZB cell deficiency in Ldlr-/- mice was associated with a significant decrease in atheroprotective IgM antibodies, including natural anti-PC IgM antibodies. In humans, we found a positive correlation between circulating MZB-like cells and anti-OSE IgM antibodies. Finally, we identified an important role for IL18 signalling in HF/HC diet-induced Tfh. CONCLUSION: Our findings reveal a previously unsuspected role of MZB cells in regulating atheroprotective 'natural' IgM antibody production in a Tfh-dependent manner, which could have important pathophysiological and therapeutic implications.


Subject(s)
Atherosclerosis , Interleukin-18 , Humans , Mice , Animals , Immunoglobulin M , B-Lymphocytes , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Cholesterol , T-Lymphocytes, Helper-Inducer
2.
Arterioscler Thromb Vasc Biol ; 40(11): 2598-2604, 2020 11.
Article in English | MEDLINE | ID: mdl-32907369

ABSTRACT

OBJECTIVE: NR4A orphan receptors have been well studied in vascular and myeloid cells where they play important roles in the regulation of inflammation in atherosclerosis. NR4A1 (nerve growth factor IB) is among the most highly induced transcription factors in B cells following BCR (B-cell receptor) stimulation. Given that B cells substantially contribute to the development of atherosclerosis, we examined whether NR4A1 regulates B-cell function during atherogenesis. Approach and Results: We found that feeding Ldlr-/- mice a Western diet substantially increased Nr4a1 expression in marginal zone B (MZB) cells compared with follicular B cells. We then generated Ldlr-/- mice with complete B- or specific MZB-cell deletion of Nr4a1. Complete B-cell deletion of Nr4a1 led to increased atherosclerosis, which was accompanied by increased T follicular helper cell-germinal center axis response, as well as increased serum total cholesterol and triglycerides levels. Interestingly, specific MZB-cell deletion of Nr4a1 increased atherosclerosis in association with an increased T follicular helper-germinal center response but without any impact on serum cholesterol or triglyceride levels. Nr4a1-/- MZB cells showed decreased PDL1 (programmed death ligand-1) expression, which may have contributed to the enhanced T follicular helper response. CONCLUSIONS: Our findings reveal a previously unsuspected role for NR4A1 in the atheroprotective role of MZB cells.


Subject(s)
Aorta/metabolism , Aortic Diseases/metabolism , Atherosclerosis/metabolism , B-Lymphocytes/metabolism , Gene Deletion , Lymphoid Tissue/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency , Animals , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/pathology , B-Lymphocytes/pathology , Disease Models, Animal , Disease Progression , Lymphoid Tissue/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Plaque, Atherosclerotic , Receptors, LDL/deficiency , Receptors, LDL/genetics , Signal Transduction
3.
Circ Res ; 125(11): 1019-1034, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31610723

ABSTRACT

RATIONALE: Atherosclerosis is a chronic inflammatory disease. Recent studies have shown that dysfunctional autophagy in endothelial cells, smooth muscle cells, and macrophages, plays a detrimental role during atherogenesis, leading to the suggestion that autophagy-stimulating approaches may provide benefit. OBJECTIVE: Dendritic cells (DCs) are at the crossroad of innate and adaptive immune responses and profoundly modulate the development of atherosclerosis. Intriguingly, the role of autophagy in DC function during atherosclerosis and how the autophagy process would impact disease development has not been addressed. METHODS AND RESULTS: Here, we show that the autophagic flux in atherosclerosis-susceptible Ldlr-/- (low-density lipoprotein receptor-deficient) mice is substantially higher in splenic and aortic DCs compared with macrophages and is further activated under hypercholesterolemic conditions. RNA sequencing and functional studies on selective cell populations reveal that disruption of autophagy through deletion of Atg16l1 differentially affects the biology and functions of DC subsets in Ldlr-/- mice under high-fat diet. Atg16l1 deficient CD11b+ DCs develop a TGF (transforming growth factor)-ß-dependent tolerogenic phenotype and promote the expansion of regulatory T cells, whereas no such effects are seen with Atg16l1 deficient CD8α+ DCs. Atg16l1 deletion in DCs (all CD11c-expressing cells) expands aortic regulatory T cells in vivo, limits the accumulation of T helper cells type 1, and reduces the development of atherosclerosis in Ldlr-/- mice. In contrast, no such effects are seen when Atg16l1 is deleted selectively in conventional CD8α+ DCs and CD103+ DCs. Total T-cell or selective regulatory T-cell depletion abrogates the atheroprotective effect of Atg16l1 deficient DCs. CONCLUSIONS: In contrast to its proatherogenic role in macrophages, autophagy disruption in DCs induces a counter-regulatory response that maintains immune homeostasis in Ldlr-/- mice under high-fat diet and limits atherogenesis. Selective modulation of autophagy in DCs could constitute an interesting therapeutic target in atherosclerosis.


Subject(s)
Aorta/immunology , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Autophagy , CD11b Antigen/immunology , Cell Communication , Cell Proliferation , Dendritic Cells/immunology , Lymphocyte Activation , T-Lymphocytes, Regulatory/immunology , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/immunology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Autophagy-Related Protein 5/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Bone Marrow Transplantation , CD11 Antigens/genetics , CD11 Antigens/metabolism , CD11b Antigen/metabolism , Cells, Cultured , Dendritic Cells/metabolism , Disease Models, Animal , Female , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/metabolism
4.
Arterioscler Thromb Vasc Biol ; 39(7): 1379-1389, 2019 07.
Article in English | MEDLINE | ID: mdl-31092015

ABSTRACT

Objective- Investigate the impact of modulating B cell FcγRIIb (Fcγ receptor IIb) expression on atherosclerosis. Approach and Results- Western diet-induced atherosclerosis was assessed in Ldlr-/- or Apoe-/- mice with B cell-specific overexpression of FcγRIIb or with an FcγRIIb promoter mutation that alters FcγRIIb expression in germinal center (GC) B cells. In males, overexpression of FcγRIIb on B cells severely reduced activated, class switched B cell responses, as indicated by reductions in GC B cells, plasma cells, and serum IgG but not IgM antibodies. Male mice overexpressing FcγRIIb developed less atherosclerosis, suggesting a pathogenic role for GC B cell IgG responses. In support of this hypothesis, male mice with a promoter polymorphism-driven reduction in FcγRIIb on GC B cells but not plasma cells have a converse phenotype of enhanced GC responses and IgG2c antibodies and enhanced atherosclerosis. IgG2c significantly enhanced TNF (tumor necrosis factor) secretion by CD11b+ CD11c+ cells expressing the high-affinity receptor FcγRIV. In females, overexpression of FcγRIIb on B cells not only reduced GC B cell responses but also substantially reduced B-1 cells and IgM antibodies, which translated into acceleration of atherosclerosis. Promoter-driven reduction in FcγRIIb did not alter GC B cell responses in females and, therefore, had no impact on atherosclerosis. Conclusions- B cell FcγRIIb differentially alters proatherogenic adaptive GC B cell and atheroprotective innate B-1 responses in male and female mice fed a western diet. Our results highlight the importance of a better understanding and ability to selectively target B cell responses in future immunotherapeutic approaches against human cardiovascular disease. Visual Overview- An online visual overview is available for this article.


Subject(s)
Atherosclerosis/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Receptors, IgG/physiology , Animals , Apolipoproteins E/physiology , Female , Immunity, Innate , Immunoglobulin M/biosynthesis , Male , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/biosynthesis
5.
Circ Res ; 121(3): 270-281, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28620068

ABSTRACT

RATIONALE: Diverse B cell responses and functions may be involved in atherosclerosis. Protective antibody responses, such as those against oxidized lipid epitopes, are thought to mainly derive from T cell-independent innate B cell subsets. In contrast, both pathogenic and protective roles have been associated with T cell-dependent antibodies, and their importance in both humans and mouse models is still unclear. OBJECTIVE: To specifically target antibody production by plasma cells and determine the impact on atherosclerotic plaque development in mice with and without CD4+ T cells. METHODS AND RESULTS: We combined a model of specific antibody deficiency, B cell-specific CD79a-Cre x XBP1 (X-box binding protein-1) floxed mice (XBP1-conditional knockout), with antibody-mediated depletion of CD4+ T cells. Ldlr knockout mice transplanted with XBP1-conditional knockout (or wild-type control littermate) bone marrow were fed western diet for 8 weeks with or without anti-CD4 depletion. All groups had similar levels of serum cholesterol. In Ldlr/XBP1-conditional knockout mice, serum levels of IgG, IgE, and IgM were significantly attenuated, and local antibody deposition in atherosclerotic plaque was absent. Antibody deficiency significantly accelerated atherosclerosis at both the aortic root and aortic arch. T cell and monocyte responses were not modulated, but necrotic core size was greater, even when adjusting for plaque size, and collagen deposition significantly lower. Anti-CD4 depletion in Ldlr/wild-type mice led to a decrease of serum IgG1 and IgG2c but not IgG3, as well as decreased IgM, associated with increased atherosclerosis and necrotic cores, and a decrease in plaque collagen. The combination of antibody deficiency and anti-CD4 depletion has no additive effects on aortic root atherosclerosis. CONCLUSIONS: The endogenous T cell-dependent humoral response can be protective. This has important implications for novel vaccine strategies for atherosclerosis and in understanding the impacts of immunotherapies used in patients at high risk for cardiovascular disease.


Subject(s)
Atherosclerosis/metabolism , B-Lymphocytes/metabolism , T-Lymphocytes/metabolism , X-Box Binding Protein 1/deficiency , Animals , Atherosclerosis/immunology , Atherosclerosis/pathology , B-Lymphocytes/immunology , Immunity, Humoral/physiology , Male , Mice , Mice, Knockout , Plasma Cells/immunology , Plasma Cells/metabolism , T-Lymphocytes/immunology , X-Box Binding Protein 1/immunology
6.
Nat Commun ; 8: 15986, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28656979

ABSTRACT

Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in many chronic inflammatory diseases, including cardiovascular and Alzheimer's disease. Here we show that microtubule-affinity regulating kinase 4 (MARK4) binds to NLRP3 and drives it to the microtubule-organizing centre, enabling the formation of one large inflammasome speck complex within a single cell. MARK4 knockdown or knockout, or disruption of MARK4-NLRP3 interaction, impairs NLRP3 spatial arrangement and limits inflammasome activation. Our results demonstrate how an evolutionarily conserved protein involved in the regulation of microtubule dynamics orchestrates NLRP3 inflammasome activation by controlling its transport to optimal activation sites, and identify a targetable function for MARK4 in the control of innate immunity.


Subject(s)
Inflammasomes/metabolism , Macrophages/enzymology , Microtubules/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Humans , Interleukin-1beta/metabolism , Male , Mice , Microtubule-Organizing Center , Primary Cell Culture
7.
Nat Med ; 23(5): 601-610, 2017 May.
Article in English | MEDLINE | ID: mdl-28414328

ABSTRACT

Splenic marginal zone B (MZB) cells, positioned at the interface between circulating blood and lymphoid tissue, detect and respond to blood-borne antigens. Here we show that MZB cells in mice activate a homeostatic program in response to a high-cholesterol diet (HCD) and regulate both the differentiation and accumulation of T follicular helper (TFH) cells. Feeding mice an HCD resulted in upregulated MZB cell surface expression of the immunoregulatory ligand PDL1 in an ATF3-dependent manner and increased the interaction between MZB cells and pre-TFH cells, leading to PDL1-mediated suppression of TFH cell motility, alteration of TFH cell differentiation, reduced TFH abundance and suppression of the proatherogenic TFH response. Our findings reveal a previously unsuspected role for MZB cells in controlling the TFH-germinal center response to a cholesterol-rich diet and uncover a PDL1-dependent mechanism through which MZB cells use their innate immune properties to limit an exaggerated adaptive immune response.


Subject(s)
B-Lymphocytes/immunology , B7-H1 Antigen/immunology , Cholesterol, Dietary/immunology , Diet , Germinal Center/immunology , Lymphoid Tissue/immunology , T-Lymphocytes, Helper-Inducer/immunology , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/immunology , Animals , Atherosclerosis/immunology , Cell Differentiation/immunology , Cell Movement/immunology , Cholesterol/blood , Cholesterol, HDL/blood , Flow Cytometry , Homeostasis , Humans , Lymphocyte Count , Lymphoid Tissue/cytology , Mice , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/pathology , Reverse Transcriptase Polymerase Chain Reaction , Spleen/cytology , Spleen/immunology
8.
Circulation ; 134(14): 1039-1051, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27587433

ABSTRACT

BACKGROUND: Atherosclerotic lesion expansion is characterized by the development of a lipid-rich necrotic core known to be associated with the occurrence of complications. Abnormal lipid handling, inflammation, and alteration of cell survival or proliferation contribute to necrotic core formation, but the molecular mechanisms involved in this process are not properly understood. C-type lectin receptor 4e (Clec4e) recognizes the cord factor of Mycobacterium tuberculosis but also senses molecular patterns released by necrotic cells and drives inflammation. METHODS: We hypothesized that activation of Clec4e signaling by necrosis is causally involved in atherogenesis. We addressed the impact of Clec4e activation on macrophage functions in vitro and on the development of atherosclerosis using low-density lipoprotein receptor-deficient (Ldlr-/-) mice in vivo. RESULTS: We show that Clec4e is expressed within human and mouse atherosclerotic lesions and is activated by necrotic lesion extracts. Clec4e signaling in macrophages inhibits cholesterol efflux and induces a Syk-mediated endoplasmic reticulum stress response, leading to the induction of proinflammatory mediators and growth factors. Chop and Ire1a deficiencies significantly limit Clec4e-dependent effects, whereas Atf3 deficiency aggravates Clec4e-mediated inflammation and alteration of cholesterol efflux. Repopulation of Ldlr-/- mice with Clec4e-/- bone marrow reduces lipid accumulation, endoplasmic reticulum stress, and macrophage inflammation and proliferation within the developing arterial lesions and significantly limits atherosclerosis. CONCLUSIONS: Our results identify a nonredundant role for Clec4e in coordinating major biological pathways involved in atherosclerosis and suggest that it may play similar roles in other chronic inflammatory diseases.


Subject(s)
Atherosclerosis/metabolism , Lectins, C-Type/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Receptors, Immunologic/metabolism , Unfolded Protein Response/physiology , Animals , Atherosclerosis/pathology , Humans , Inflammation/pathology , Inflammation Mediators/metabolism , Lectins, C-Type/genetics , Lipoproteins, LDL/metabolism , Membrane Proteins/genetics , Mice , Mice, Knockout , Necrosis/metabolism , Necrosis/pathology , Phenotype , Receptors, LDL/genetics , Receptors, LDL/metabolism
9.
Arterioscler Thromb Vasc Biol ; 35(8): 1770-3, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26088575

ABSTRACT

OBJECTIVE: To determine the role of regulatory B cell-derived interleukin (IL)-10 in atherosclerosis. APPROACH AND RESULTS: We created chimeric Ldlr(-/-) mice with a B cell-specific deficiency in IL-10, and confirmed that purified B cells stimulated with lipopolysaccharide failed to produce IL-10 compared with control Ldlr(-/-) chimeras. Mice lacking B-cell IL-10 demonstrated enhanced splenic B-cell numbers but no major differences in B-cell subsets, T cell or monocyte distribution, and unchanged body weights or serum cholesterol levels compared with control mice. After 8 weeks on high-fat diet, there were no differences in aortic root or aortic arch atherosclerosis. In addition to plaque size, plaque composition (macrophages, T cells, smooth muscle cells, and collagen) was similar between groups. CONCLUSIONS: In contrast to its prominent regulatory role in many immune-mediated diseases and its proposed modulatory role in atherosclerosis, B cell-derived IL-10 does not alter atherosclerosis in mice.


Subject(s)
Aorta/metabolism , Aortic Diseases/metabolism , Atherosclerosis/metabolism , B-Lymphocytes, Regulatory/metabolism , Interleukin-10/metabolism , Animals , Aorta/immunology , Aorta/pathology , Aortic Diseases/blood , Aortic Diseases/genetics , Aortic Diseases/immunology , Aortic Diseases/pathology , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , B-Lymphocytes, Regulatory/immunology , Biomarkers/blood , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Interleukin-10/deficiency , Interleukin-10/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic , Receptors, LDL/deficiency , Receptors, LDL/genetics , Time Factors
10.
Circulation ; 130(16): 1363-73, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25223984

ABSTRACT

BACKGROUND: Plasmacytoid dendritic cells (pDCs) bridge innate and adaptive immune responses and are important regulators of immuno-inflammatory diseases. However, their role in atherosclerosis remains elusive. METHODS AND RESULTS: Here, we used genetic approaches to investigate the role of pDCs in atherosclerosis. Selective pDC deficiency in vivo was achieved using CD11c-Cre × Tcf4(-/flox) bone marrow transplanted into Ldlr(-/-) mice. Compared with control Ldlr(-/-) chimeric mice, CD11c-Cre × Tcf4(-/flox) mice had reduced atherosclerosis levels. To begin to understand the mechanisms by which pDCs regulate atherosclerosis, we studied chimeric Ldlr(-/-) mice with selective MHCII deficiency on pDCs. Significantly, these mice also developed reduced atherosclerosis compared with controls without reductions in pDC numbers or changes in conventional DCs. MHCII-deficient pDCs showed defective stimulation of apolipoprotein B100-specific CD4(+) T cells in response to native low-density lipoprotein, whereas production of interferon-α was not affected. Finally, the atheroprotective effect of selective MHCII deficiency in pDCs was associated with significant reductions of proatherogenic T cell-derived interferon-γ and lesional T cell infiltration, and was abrogated in CD4(+) T cell-depleted animals. CONCLUSIONS: This study supports a proatherogenic role for pDCs in murine atherosclerosis and identifies a critical role for MHCII-restricted antigen presentation by pDCs in driving proatherogenic T cell immunity.


Subject(s)
Antigen-Presenting Cells/immunology , Atherosclerosis/immunology , Atherosclerosis/pathology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Histocompatibility Antigens Class II/immunology , Adaptive Immunity/immunology , Animals , Aorta/cytology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/immunology , CD4-Positive T-Lymphocytes/cytology , Cell Communication/immunology , Cells, Cultured , Dendritic Cells/cytology , Flow Cytometry , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/genetics , Receptors, LDL/immunology , Transcription Factor 4
11.
Circ Cardiovasc Genet ; 7(6): 799-805, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25176937

ABSTRACT

BACKGROUND: Vascular aneurysm is an abnormal local dilatation of an artery that can lead to vessel rupture and sudden death. The only treatment involves surgical or endovascular repair or exclusion. There is currently no approved medical therapy for this condition. Recent data established a strong association between genetic variants in the 9p21 chromosomal region in humans and the presence of cardiovascular diseases, including aneurysms. However, the mechanisms linking this 9p21 DNA variant to cardiovascular risk are still unknown. METHODS AND RESULTS: Here, we show that deletion of the orthologous 70-kb noncoding interval on mouse chromosome 4 (chr4(Δ70kb/Δ70kb) mice) is associated with reduced aortic expression of cyclin-dependent kinase inhibitor genes p19Arf and p15Inkb. Vascular smooth muscle cells from chr4(Δ70kb/Δ70kb) mice show reduced transforming growth factor-ß-dependent canonical Smad2 signaling but increased cyclin-dependent kinase-dependent Smad2 phosphorylation at linker sites, a phenotype previously associated with tumor growth and consistent with the mechanistic link between reduced canonical transforming growth factor-ß signaling and susceptibility to vascular diseases. We also show that targeted deletion of the 9p21 risk interval promotes susceptibility to aneurysm development and rupture when mice are subjected to a validated model of aneurysm formation. The vascular disease of chr4(Δ70kb/Δ70kb) mice is prevented by treatment with a cyclin-dependent kinase inhibitor. CONCLUSIONS: The results establish a direct mechanistic link between 9p21 noncoding risk interval and susceptibility to aneurysm and may have important implications for the understanding and treatment of vascular diseases.


Subject(s)
Aneurysm/pathology , Chromosomes/genetics , Smad2 Protein/metabolism , Aneurysm/drug therapy , Aneurysm/mortality , Animals , Cells, Cultured , Chromosomes/metabolism , Cyclin-Dependent Kinase Inhibitor p15/deficiency , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p19/deficiency , Cyclin-Dependent Kinase Inhibitor p19/genetics , Disease Models, Animal , Disease Susceptibility , Flavonoids/pharmacology , Flavonoids/therapeutic use , Gene Expression/drug effects , Kaplan-Meier Estimate , Matrix Metalloproteinase 12/metabolism , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Phenotype , Phosphorylation/drug effects , Piperidines/pharmacology , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Risk Factors , Signal Transduction/drug effects , Transforming Growth Factor beta/pharmacology
12.
J Clin Invest ; 123(3): 1176-81, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23454767

ABSTRACT

Milk fat globule-EGF 8 (MFGE8) plays important, nonredundant roles in several biological processes, including apoptotic cell clearance, angiogenesis, and adaptive immunity. Several recent studies have reported a potential role for MFGE8 in regulation of the innate immune response; however, the precise mechanisms underlying this role are poorly understood. Here, we show that MFGE8 is an endogenous inhibitor of inflammasome-induced IL-1ß production. MFGE8 inhibited necrotic cell-induced and ATP-dependent IL-1ß production by macrophages through mediation of integrin ß(3) and P2X7 receptor interactions in primed cells. Itgb3 deficiency in macrophages abrogated the inhibitory effect of MFGE8 on ATP-induced IL-1ß production. In a setting of postischemic cerebral injury in mice, MFGE8 deficiency was associated with enhanced IL-1ß production and larger infarct size; the latter was abolished after treatment with IL-1 receptor antagonist. MFGE8 supplementation significantly dampened caspase-1 activation and IL-1ß production and reduced infarct size in wild-type mice, but did not limit cerebral necrosis in Il1b-, Itgb3-, or P2rx7-deficient animals. In conclusion, we demonstrated that MFGE8 regulates innate immunity through inhibition of inflammasome-induced IL-1ß production.


Subject(s)
Antigens, Surface/physiology , Infarction, Middle Cerebral Artery/immunology , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/physiology , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Caspase 1/metabolism , Cells, Cultured , Immunity, Innate , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Integrin beta3/metabolism , Lipopolysaccharides/pharmacology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Milk Proteins/genetics , Milk Proteins/metabolism , Receptors, Purinergic P2X7/metabolism
13.
Arterioscler Thromb Vasc Biol ; 32(7): 1573-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22426131

ABSTRACT

OBJECTIVE: The goal of this study was to assess the role of B-cell activating factor (BAFF) receptor in B-cell regulation of atherosclerosis. METHODS AND RESULTS: Male LDL receptor-deficient mice (Ldlr(-/-)) were lethally irradiated and reconstituted with either wild type or BAFF receptor (BAFF-R)-deficient bone marrow. After 4 weeks of recovery, mice were put on a high-fat diet for 6 or 8 weeks. BAFF-R deficiency in bone marrow cells led to a marked reduction of conventional mature B2 cells but did not affect the B1a cell subtype. This was associated with a significant reduction of dendritic cell activation and T-cell proliferation along with a reduction of IgG antibodies against malondialdehyde-modified low-density lipoprotein. In contrast, serum IgM type antibodies were preserved. Interestingly, BAFF-R deficiency was associated with a significant reduction in atherosclerotic lesion development and reduced numbers of plaque T cells. Selective BAFF-R deficiency on B cells led to a similar reduction in lesion size and T-cell infiltration but in contrast did not affect dendritic cell activation. CONCLUSIONS: BAFF-R deficiency in mice selectively alters mature B2 cell-dependent cellular and humoral immune responses and limits the development of atherosclerosis.


Subject(s)
Atherosclerosis/etiology , Animals , B-Cell Activation Factor Receptor/physiology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes/immunology
14.
Eur J Immunol ; 41(10): 3017-27, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21739430

ABSTRACT

The major leukocyte population in the decidua during the first trimester of pregnancy consists of NK cells that express receptors capable of recognizing MHC class I molecules expressed by placental trophoblast. These include members of the killer immunoglobulin-like receptor (KIR) family, the two-domain KIR (KIR2D), which recognize HLA-C. Interactions between decidual NK (dNK) cell KIR2D and placental HLA-C contribute to the success of pregnancy and dNK cells express KIR2D at higher frequency than peripheral NK (pNK) cells. Thus, they are biased toward recognizing HLA-C. In order to investigate when this unusual KIR repertoire appears, we compared the phenotype of NK cells isolated from non-pregnant (endometrium) and pregnant (decidua) human uterine mucosa. Endometrial NK (eNK) cells did not express KIR2D at a higher level than matched pNK cells, so the bias toward HLA-C recognition occurs as a response to pregnancy. Furthermore, HLA-C expression was upregulated on uterine stromal cells as the mucosa transformed from endometrium to decidua at the onset of pregnancy. As uterine NK (uNK) cells can mature from NK precursors and acquire KIR expression in utero, the pregnancy-specific bias of uNK cells toward HLA-C recognition could arise as developing uNK cells interact with uterine stromal cells, which express higher levels of HLA-C during pregnancy.


Subject(s)
Decidua/immunology , Endometrium/immunology , Killer Cells, Natural/immunology , Pregnancy/immunology , Receptors, KIR/biosynthesis , Receptors, KIR/immunology , Uterus/immunology , Antigens, CD/immunology , Cell Communication , Cells, Cultured , Female , Flow Cytometry , HLA-C Antigens/immunology , HLA-C Antigens/metabolism , Humans , Killer Cells, Natural/metabolism , Mucous Membrane/immunology , Stromal Cells/immunology , Stromal Cells/metabolism
15.
Mol Hum Reprod ; 17(9): 577-86, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21471023

ABSTRACT

Restricted expression of human leucocyte antigen-G (HLA-G) to fetal extravillous trophoblast cells, which invade the decidua during implantation, suggests a role for HLA-G in placentation. In this study, we have investigated several aspects of HLA-G expression and function. Surface levels of HLA-G expression were measured in 70 normal pregnancies. We show the dimeric conformation that is unique to HLA-G forms after passage through the Golgi apparatus. Differences were found in the receptor repertoire of decidual natural killer (dNK) cells that express the leucocyte immunoglobulin-like receptor B1 (LILRB1), which binds dimeric HLA-G strongly. We then measured functional responses of dNK cells with LILRB1, when stimulated by HLA-G in both monomeric and dimeric conformations. Degranulation, interferon-γ and interleukin-8 production by dNK cells freshly isolated from the first trimester implantation site were either undetected or not affected by HLA-G. These findings should be considered when inferring the activity of tissue NK cells from results obtained with cell lines, peripheral NK or cultured dNK cells.


Subject(s)
Decidua/cytology , Decidua/immunology , HLA-G Antigens/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Antigens, CD/immunology , Cells, Cultured , Coculture Techniques , Female , HLA-C Antigens/immunology , HLA-G Antigens/chemistry , Humans , Interferon-gamma/immunology , Interleukin-8/immunology , Killer Cells, Natural/cytology , Leukocyte Immunoglobulin-like Receptor B1 , Pregnancy , Protein Conformation , Receptors, Immunologic/immunology , Trophoblasts/immunology
16.
Mol Hum Reprod ; 15(1): 39-48, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19088135

ABSTRACT

The endometrium contains a distinct population of immune cells that undergo cyclic changes during the menstrual cycle and implantation. The majority of these leucocytes are uterine NK (uNK) cells, however how these cells interact with uterine stromal fibroblasts remains unclear. We therefore investigated the paracrine effect of medium conditioned by uterine decidual leucocytes (which are enriched for uNK cells) on the gene expression profile of endometrial stromal fibroblasts in vitro using a cDNA microarray. Our results, verified by real-time PCR, ELISA and FACS analysis, reveal that soluble factors from uterine leucocytes substantially alter endometrial stromal fibroblast gene expression. The largest group of up-regulated genes found was chemokines and cytokines. These include IL-8, CCL8 and CXCL1, which have also been shown to be stimulated by contact of stromal fibroblasts with trophoblast, suggesting that uNK cells work synergistically to support trophoblast migration during implantation. The decidual leucocytes also up-regulated IL-15 and IL-15Ralpha in stromal fibroblasts which could produce a niche for uNK cells allowing proliferation within and recruitment into the uterus, as seen in bone marrow. Overall this study demonstrates, for the first time, the paracrine communication between uterine leucocytes and uterine stromal fibroblasts, and adds to the understanding of how the uterine immune system contributes to the changes seen within the cycling endometrium.


Subject(s)
Fibroblasts/metabolism , Leukocytes/cytology , Leukocytes/physiology , Uterus/cytology , Adult , Chemokine CCL8/genetics , Chemokine CXCL1/genetics , Culture Media, Conditioned/pharmacology , Endometrium/cytology , Enzyme-Linked Immunosorbent Assay , Female , Fibroblasts/drug effects , Flow Cytometry , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , In Vitro Techniques , Interleukin-15/genetics , Interleukin-8/genetics , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Receptors, Interleukin-15/genetics
17.
J Immunol ; 181(1): 39-46, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18566368

ABSTRACT

Immunogenetic studies suggest that interactions between maternal killer Ig-like receptor (KIR) expressed by uterine NK (uNK) cells, and fetal HLA-C molecules on trophoblast, influence the success of human placentation. However, the exact functional response of fresh uNK cells to trophoblast HLA-C molecules is unknown. In this study, we show by quantitative RT-PCR and FACS that both activating and inhibitory KIR specific for HLA-C are expressed at higher levels and on an increased proportion of NK cells in the human decidua compared with blood. In contrast, expression of KIR3DL1/S1, which is specific for HLA-B, is similar in both NK cell populations. Remarkably, there is also a temporal change in the expression pattern of HLA-C-specific KIR, with a decline in both intensity of expression and frequency on uNK cells throughout the first trimester of pregnancy. This selective up-regulation of KIR has functional consequences because uNK cells show increased binding of HLA-C tetramers compared with blood NK cells. Ab cross-linking shows that these KIR are functional and results in increased cytokine secretion. uNK cells, therefore, exhibit a unique KIR profile that enhances their ability to recognize trophoblast cells expressing HLA-C at the materno-fetal interface. This is the first report to demonstrate selective regulation of KIR expression over time in vivo in a normal physiological situation and suggests that KIR expression by uNK cells is regulated by the tissue microenvironment in the decidua.


Subject(s)
Gestational Age , HLA-C Antigens/immunology , Killer Cells, Natural/immunology , Receptors, KIR/immunology , Uterus/immunology , Cross Reactions/immunology , Decidua/metabolism , Female , Humans , Pregnancy , Pregnancy Trimester, First/immunology , Protein Binding , Receptors, KIR/genetics , Receptors, KIR/metabolism , Transcription, Genetic/genetics , Trophoblasts/metabolism , Uterus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...