Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Adv Sci (Weinh) ; 6(5): 1801752, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30886802

ABSTRACT

Understanding nanoscale molecular order within organic electronic materials is a crucial factor in building better organic electronic devices. At present, techniques capable of imaging molecular order within a polymer are limited in resolution, accuracy, and accessibility. In this work, presented are secondary electron (SE) spectroscopy and secondary electron hyperspectral imaging, which make an exciting alternative approach to probing molecular ordering in poly(3-hexylthiophene) (P3HT) with scanning electron microscope-enabled resolution. It is demonstrated that the crystalline content of a P3HT film is reflected by its SE energy spectrum, both empirically and through correlation with nano-Fourier-transform infrared spectroscopy, an innovative technique for exploring nanoscale chemistry. The origin of SE spectral features is investigated using both experimental and modeling approaches, and it is found that the different electronic properties of amorphous and crystalline P3HT result in SE emission with different energy distributions. This effect is exploited by acquiring hyperspectral SE images of different P3HT films to explore localized molecular orientation. Machine learning techniques are used to accurately identify and map the crystalline content of the film, demonstrating the power of an exciting characterization technique.

3.
Pest Manag Sci ; 74(10): 2265-2276, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29235732

ABSTRACT

Herbicides classified as synthetic auxins have been most commonly used to control broadleaf weeds in a variety of crops and in non-cropland areas since the first synthetic auxin herbicide (SAH), 2,4-D, was introduced to the market in the mid-1940s. The incidence of weed species resistant to SAHs is relatively low considering their long-term global application with 30 broadleaf, 5 grass, and 1 grass-like weed species confirmed resistant to date. An understanding of the context and mechanisms of SAH resistance evolution can inform management practices to sustain the longevity and utility of this important class of herbicides. A symposium was convened during the 2nd Global Herbicide Resistance Challenge (May 2017; Denver, CO, USA) to provide an overview of the current state of knowledge of SAH resistance mechanisms including case studies of weed species resistant to SAHs and perspectives on mitigating resistance development in SAH-tolerant crops. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Herbicide Resistance , Herbicides/pharmacology , Indoleacetic Acids/pharmacology , Plant Weeds/drug effects , Herbicides/chemical synthesis , Indoleacetic Acids/chemical synthesis , Weed Control
4.
Adv Mater ; 29(47)2017 Dec.
Article in English | MEDLINE | ID: mdl-29116662

ABSTRACT

Nanostructures underpin the excellent properties of silk. Although the bulk nanocomposition of silks is well studied, direct evidence of the spatial variation of nanocrystalline (ordered) and amorphous (disordered) structures remains elusive. Here, secondary electron hyperspectral imaging can be exploited for direct imaging of hierarchical structures in carbon-based materials, which cannot be revealed by any other standard characterization methods. Through applying this technique to silks from domesticated (Bombyx mori) and wild (Antheraea mylitta) silkworms, a variety of previously unseen features are reported, highlighting the local interplay between ordered and disordered structures. This technique is able to differentiate composition on the nanoscale and enables in-depth studies into the relationship between morphology and performance of these complex biopolymer systems.

5.
ACS Omega ; 2(5): 2126-2133, 2017 May 31.
Article in English | MEDLINE | ID: mdl-31457566

ABSTRACT

Mixed halide (I/Br) complex organic/inorganic hybrid perovskite materials have attracted much attention recently because of their excellent photovoltaic properties. Although it has been proposed that their stability is linked to the chemical inhomogeneity of I/Br, no direct proof has been offered to date. Here, we report a new method, secondary electron hyperspectral imaging (SEHI), which allows direct imaging of the local variation in Br concentration in mixed halide (I/Br) organic/inorganic hybrid perovskites on a nanometric scale. We confirm the presence of a nonuniform Br distribution with variation in concentration within the grain interiors and boundaries and demonstrate how SEHI in conjunction with low-voltage scanning electron microscopy can enhance the understanding of the fundamental physics and materials science of organic/inorganic hybrid photovoltaics, illustrating its potential for research and development in "real-world" applications.

6.
Sci Rep ; 6: 21045, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26878907

ABSTRACT

Two-dimensional (2D) materials usually have a layer-dependent work function, which require fast and accurate detection for the evaluation of their device performance. A detection technique with high throughput and high spatial resolution has not yet been explored. Using a scanning electron microscope, we have developed and implemented a quantitative analytical technique which allows effective extraction of the work function of graphene. This technique uses the secondary electron contrast and has nanometre-resolved layer information. The measurement of few-layer graphene flakes shows the variation of work function between graphene layers with a precision of less than 10 meV. It is expected that this technique will prove extremely useful for researchers in a broad range of fields due to its revolutionary throughput and accuracy.

7.
Nat Commun ; 6: 6928, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25906738

ABSTRACT

The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...