Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 17(11): 6591-6597, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29032679

ABSTRACT

We report the use of infrared (IR) scattering-type scanning near-field optical microscopy (s-SNOM) as a nondestructive method to map free-carriers in axially modulation-doped silicon nanowires (SiNWs) with nanoscale spatial resolution. Using this technique, we can detect local changes in the electrically active doping concentration based on the infrared free-carrier response in SiNWs grown using the vapor-liquid-solid (VLS) method. We demonstrate that IR s-SNOM is sensitive to both p-type and n-type free-carriers for carrier densities above ∼1 × 1019 cm-3. We also resolve subtle changes in local conductivity properties, which can be correlated with growth conditions and surface effects. The use of s-SNOM is especially valuable in low mobility materials such as boron-doped p-type SiNWs, where optimization of growth has been difficult to achieve due to the lack of information on dopant distribution and junction properties. s-SNOM can be widely employed for the nondestructive characterization of nanostructured material synthesis and local electronic properties without the need for contacts or inert atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...