Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 99(5): 528-37, 2016 May.
Article in English | MEDLINE | ID: mdl-26575415

ABSTRACT

We previously reported that statins improve the symptoms of X-linked nephrogenic diabetes insipidus (X-NDI) in animal models. The aim of this study was to verify whether the pleiotropic effect of statins on AQP2 trafficking and kidney-concentrating ability, observed in rodents, was attainable in humans at therapeutic doses. We enrolled 24 naïve hypercholesterolemic patients and measured urine excretion of AQP2 (uAQP2) at baseline and during 12 weeks of treatment with simvastatin 20 mg/day. Simvastatin induced a rapid and significant increase of uAQP2, reduced the 24-hour diuresis, and increased urine osmolality. These effects were also maintained in patients chronically treated with statins for at least 1 year. This study strongly suggests that statins may effectively enhance the efficacy of current pharmacological treatment of patients with urine-concentrating defects caused by defective AQP2 plasma membrane trafficking, like X-NDI.


Subject(s)
Anticholesteremic Agents/pharmacology , Aquaporin 2/urine , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hypercholesterolemia/drug therapy , Simvastatin/pharmacology , Adult , Aged , Anticholesteremic Agents/therapeutic use , Diuresis/drug effects , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lovastatin/pharmacology , Male , Middle Aged , Osmolar Concentration , Simvastatin/administration & dosage , Simvastatin/therapeutic use , Time Factors
2.
Acta Physiol (Oxf) ; 200(4): 339-45, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20618170

ABSTRACT

AIMS: Few investigations have explored the urinary aquaporin-2 (u-AQP2) excretion pattern after birth in preterm infants with conflicting results regarding the correlation between u-AQP2, urinary osmolality and vasopressin. The aims of this study were to evaluate u-AQP2 excretion during the first week of life in preterm infants, to correlate u-AQP2 with other markers of renal function and to investigate the relationship between u-AQP2, urinary tonicity and arginine-vasopressin in the immature kidney. METHODS: In infants born less than 33 weeks daily diuresis, u-AQP2, urinary arginine-vasopressin, urine and plasma tonicity, creatinine and electrolytes were measured through the first 7 days of life. RESULTS: Fifty-five infants were evaluated. u-AQP2 excretion showed the following profile: the highest u-AQP2 levels were found on day 2 and values remained significantly higher until day 5 with respect to day 1. On day 6, u-AQP2 levels significantly decreased to values closer to those found on day 1. u-AQP2 excretion was not associated with arginine-vasopressin while significant, but weak association was found with urinary tonicity (r = -0.20; -0.32 < r < -0.11; P < 0.05). u-AQP2 excretion and creatinine clearance were significantly associated during the study period (r = 0.19; 0.08 < r < 0.29; P < 0.05). There was a strong association between totally u-AQP2 excretion and diuresis over the week (r = 0.72; 0.66 < r < 0.76; P < 0.0001). CONCLUSION: Significant variations occur in AQP2 expression levels during the first week of life in preterm infants. AQP2 does not seem to contribute to the urinary concentration ability after birth. Further investigations are required to elucidate the mechanisms underlying the strong association between diuresis and u-AQP2 excretion in early postnatal life.


Subject(s)
Aquaporin 2/urine , Diuresis , Infant, Newborn/urine , Infant, Premature/urine , Vasopressins/metabolism , Aquaporin 2/blood , Biomarkers/metabolism , Female , Gestational Age , Humans , Infant, Newborn/blood , Infant, Premature/blood , Kidney/metabolism , Kidney Function Tests , Pregnancy
3.
Semin Nephrol ; 28(3): 297-305, 2008 May.
Article in English | MEDLINE | ID: mdl-18519090

ABSTRACT

The kidney plays a critical role in regulating water homeostasis through specific proteins highly expressed in the kidney, called aquaporins, allowing water permeation at a high rate. This brief review focuses on some nephropathies associated with impaired urinary concentrating ability and in particular analyzes the role of aquaporin 2 in hypercalciuria, the most common metabolic abnormality in patients with nephrolithiasis. Specifically, this review discusses the relationship between hypercalciuria and impaired aquaporin 2-mediated water handling in both acquired and inherited disorders characterized by hypercalciuria, including those affecting the sensor of extracellular calcium concentration, the calcium-sensing receptor, which represents the principal target for extracellular calcium regulation of several tissues including parathyroid glands and kidney. In the kidney, the calcium-sensing receptor regulates renal calcium excretion and influences the transepithelial movement of water and other electrolytes. Understanding the molecular basis of alteration of kidney concentrating ability found in hypercalciuria will help for devising strategies for reducing the risk of nephrocalcinosis, nephrolithiasis, and renal insufficiency.


Subject(s)
Aquaporin 2/physiology , Hypercalciuria/complications , Polyuria/etiology , Receptors, Calcium-Sensing/physiology , Homeostasis , Humans , Kidney/metabolism , Nocturnal Enuresis/etiology , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...