Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 850: 157445, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35882324

ABSTRACT

Anthropogenic mercury (Hg) undergoes long-range transport to the Arctic where some of it is transformed into methylmercury (MeHg), potentially leading to high exposure in some Arctic inhabitants and wildlife. The environmental exposure of Hg is determined not just by the amount of Hg entering the Arctic, but also by biogeochemical and ecological processes occurring in the Arctic. These processes affect MeHg uptake in biota by regulating the bioavailability, methylation and demethylation, bioaccumulation and biomagnification of MeHg in Arctic ecosystems. Here, we present a new budget for pools and fluxes of MeHg in the Arctic and review the scientific advances made in the last decade on processes leading to environmental exposure to Hg. Methylation and demethylation are key processes controlling the pool of MeHg available for bioaccumulation. Methylation of Hg occurs in diverse Arctic environments including permafrost, sediments and the ocean water column, and is primarily a process carried out by microorganisms. While microorganisms carrying the hgcAB gene pair (responsible for Hg methylation) have been identified in Arctic soils and thawing permafrost, the formation pathway of MeHg in oxic marine waters remains less clear. Hotspots for methylation of Hg in terrestrial environments include thermokarst wetlands, ponds and lakes. The shallow sub-surface enrichment of MeHg in the Arctic Ocean, in comparison to other marine systems, is a possible explanation for high MeHg concentrations in some Arctic biota. Bioconcentration of aqueous MeHg in bacteria and algae is a critical step in the transfer of Hg to top predators, which may be dampened or enhanced by the presence of organic matter. Variable trophic position has an important influence on MeHg concentrations among populations of top predator species such as ringed seal and polar bears distributed across the circumpolar Arctic. These scientific advances highlight key processes that affect the fate of anthropogenic Hg deposited to Arctic environments.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Arctic Regions , Ecosystem , Environmental Monitoring , Mercury/analysis , Methylmercury Compounds/metabolism , Soil , Water , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 837: 155802, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35550896

ABSTRACT

The Arctic region forms a unique environment with specific physical, chemical, and biological processes affecting mercury (Hg) cycles and limited anthropogenic Hg sources. However, historic global emissions and long range atmospheric transport has led to elevated Hg in Arctic wildlife and waterways. Continuous atmospheric Hg measurements, spanning 20 years, and increased monitoring sites has allowed a more comprehensive understanding of how Arctic atmospheric mercury is changing over time. Time-series trend analysis of TGM (Total Gaseous Mercury) in air was performed from 10 circumpolar air monitoring stations, comprising of high-Arctic, and sub-Arctic sites. GOM (gaseous oxidised mercury) and PHg (particulate bound mercury) measurements were also available at 2 high-Arctic sites. Seasonal mean TGM for sub-Arctic sites were lowest during fall ranging from 1.1 ng m-3 Hyytiälä to 1.3 ng m-3, Little Fox Lake. Mean TGM concentrations at high-Arctic sites showed the greatest variability, with highest daily means in spring ranging between 4.2 ng m-3 at Amderma and 2.4 ng m-3 at Zeppelin, largely driven by local chemistry. Annual TGM trend analysis was negative for 8 of the 10 sites. High-Arctic seasonal TGM trends saw smallest decline during summer. Fall trends ranged from -0.8% to -2.6% yr-1. Across the sub-Arctic sites spring showed the largest significant decreases, ranging between -7.7% to -0.36% yr-1, while fall generally had no significant trends. High-Arctic speciation of GOM and PHg at Alert and Zeppelin showed that the timing and composition of atmospheric mercury deposition events are shifting. Alert GOM trends are increasing throughout the year, while PHg trends decreased or not significant. Zeppelin saw the opposite, moving towards increasing PHg and decreasing GOM. Atmospheric mercury trends over the last 20 years indicate that Hg concentrations are decreasing across the Arctic, though not uniformly. This is potentially driven by environmental change, such as plant productivity and sea ice dynamics.


Subject(s)
Air Pollutants , Mercury , Air Pollutants/analysis , Arctic Regions , Dust/analysis , Environmental Monitoring , Gases/analysis , Mercury/analysis
3.
Sci Total Environ ; 775: 145109, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33631575

ABSTRACT

The long-term time trends of atmospheric pollutants at eight Arctic monitoring stations are reported. The work was conducted under the Arctic Monitoring and Assessment Programme (AMAP) of the Arctic Council. The monitoring stations were: Alert, Canada; Zeppelin, Svalbard; Stórhöfði, Iceland; Pallas, Finland; Andøya, Norway; Villum Research Station, Greenland; Tiksi and Amderma, Russia. Persistent organic pollutants (POPs) such as α- and γ-hexachlorocyclohexane (HCH), polychlorinated biphenyls (PCBs), α-endosulfan, chlordane, dichlorodiphenyltrichloroethane (DDT) and polybrominated diphenyl ethers (PBDEs) showed declining trends in air at all stations. However, hexachlorobenzene (HCB), one of the initial twelve POPs listed in the Stockholm Convention in 2004, showed either increasing or non-changing trends at the stations. Many POPs demonstrated seasonality but the patterns were not consistent among the chemicals and stations. Some chemicals showed winter minimum and summer maximum concentrations at one station but not another, and vice versa. The ratios of chlordane isomers and DDT species showed that they were aged residues. Time trends of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were showing decreasing concentrations at Alert, Zeppelin and Andøya. The Chemicals of Emerging Arctic Concern (CEAC) were either showing stable or increasing trends. These include methoxychlor, perfluorohexane sulfonic acid (PFHxS), 6:2 fluorotelomer alcohol, and C9-C11 perfluorocarboxylic acids (PFCAs). We have demonstrated the importance of monitoring CEAC before they are being regulated because model calculations to predict their transport mechanisms and fate cannot be made due to the lack of emission inventories. We should maintain long-term monitoring programmes with consistent data quality in order to evaluate the effectiveness of chemical control efforts taken by countries worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL
...