Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38725939

ABSTRACT

Autotaxin, encoded by the Enpp2 gene, produces lysophosphatidic acid (LPA), which exerts numerous biological functions via its cognate receptors. Enpp2 null mutant mice die by embryonic day 9.5 owing to aberrant vascular development in the yolk sac, preventing analysis after that period. In this study, we found that Enpp2 heterozygous mice in the DBA/2 genetic background showed an eye-open-at-birth phenotype at high frequency, caused by failure of eyelid closure during the embryonic stage. Notably, wildtype pups from the Enpp2 heterozygous dam showed the phenotype, although at lower frequency, suggesting that maternal LPA affects the embryonic development.

2.
Biol Open ; 12(11)2023 11 15.
Article in English | MEDLINE | ID: mdl-37795611

ABSTRACT

Autotaxin, encoded by the Enpp2 gene, is an exoenzyme that produces lysophosphatidic acid, thereby regulating many biologic functions. We previously reported that Enpp2 mRNA was abundantly expressed in yolk sac visceral endoderm (VE) cells and that Enpp2-/- mice were lethal at embryonic day 9.5 owing to angiogenic defects in the yolk sac. Enpp2-/- mice showed lysosome fragmentation in VE cells and embryonic abnormalities including allantois malformation, neural tube defects, no axial turning, and head cavity formation. However, whether the defects in endocytic vesicle formation affect membrane trafficking in VE cells remained to be directly examined. In this study, we found that pinocytosis, transcytosis, and secretion of angiogenic factors such as vascular endothelial growth factor and transforming growth factor ß1 were impaired in Enpp2-/- VE cells. Moreover, pharmacologic inhibition of membrane trafficking phenocopied the defects of Enpp2-/- mice. These findings demonstrate that Enpp2 promotes endocytosis and secretion of angiogenic factors in VE cells, thereby regulating angiogenesis/vasculogenesis and embryonic development.


Subject(s)
Phosphoric Diester Hydrolases , Yolk Sac , Animals , Female , Mice , Pregnancy , Cell Differentiation , Embryonic Development , Endoderm , Vascular Endothelial Growth Factor A , Yolk Sac/blood supply , Phosphoric Diester Hydrolases/metabolism
3.
Magn Reson Imaging ; 88: 123-131, 2022 05.
Article in English | MEDLINE | ID: mdl-35131262

ABSTRACT

During brain development, neural circuits are formed through cellular differentiation, cell migration, axon guidance, and synaptogenic processes by the coordinated actions of many genes. Abnormalities in neural development, especially connectivity defects, can result in psychiatric disorders, such as schizophrenia and autism. Recent advances in diffusion tensor imaging have enabled us to examine the brain's macroscopic nerve trajectories. In this study, we investigated the abnormalities of the commissural fibers that connect the left and right cerebral hemispheres in mice lacking heparan sulfate 6-O endosulfatases, Sulf1 and Sulf2 (Sulf1/2), which are extracellular enzymes that remove 6-O sulfate from heparan sulfate and thereby modulate the function of axon guidance factors. We previously demonstrated that Sulf1/2 double knockout (DKO) mouse embryos harbored defects in their corticospinal tract and that some of these DKO mice experienced corpus callosum agenesis. However, abnormalities of the commissural fibers in the adult DKO brain have not been systematically assessed. In this study, we investigated commissural fiber abnormalities in these mice by the combined use of radiological and histological analyses. First, we acquired diffusion-weighted images and three-dimensional-T2 weighted images of adult brains using a 9.4 T animal magnetic resonance imaging system and found that Sulf1/2 DKO mice had a smaller corpus callosum and dorsal hippocampal commissure. Next, we performed myelin staining and anterograde tracing, revealing that the dorsal hippocampal commissure was elongated in a rostral direction. These results suggest that Sulf1/2 play an important role in the formation of commissural tracts and that diffusion tensor imaging associated with microscopic analysis is a powerful tool to clarify nerve tract abnormalities.


Subject(s)
Diffusion Tensor Imaging , Sulfotransferases , Animals , Brain/diagnostic imaging , Brain/metabolism , Heparitin Sulfate , Humans , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred C57BL , Mice, Knockout , Sulfotransferases/genetics , Sulfotransferases/metabolism
4.
Front Neuroanat ; 15: 726718, 2021.
Article in English | MEDLINE | ID: mdl-34489650

ABSTRACT

The heparan sulfate 6-O-endosulfatases, Sulfatase 1 (Sulf1), and Sulfatase 2 (Sulf2), are extracellular enzymes that regulate cellular signaling by removing 6-O-sulfate from the heparan sulfate chain. Although previous studies have revealed that Sulfs are essential for normal development, their functions in the adult brain remain largely unknown. To gain insight into their neural functions, we used in situ hybridization to systematically examine Sulf1/2 mRNA expression in the adult mouse brain. Sulf1 and Sulf2 mRNAs showed distinct expression patterns, which is in contrast to their overlapping expression in the embryonic brain. In addition, we found that Sulf1 was distinctly expressed in the nucleus accumbens shell, the posterior tail of the striatum, layer 6 of the cerebral cortex, and the paraventricular nucleus of the thalamus, all of which are target areas of dopaminergic projections. Using double-labeling techniques, we showed that Sulf1-expressing cells in the above regions coincided with cells expressing the dopamine D1 and/or D2 receptor. These findings implicate possible roles of Sulf1 in modulation of dopaminergic transmission and dopamine-mediated behaviors.

5.
Glycobiology ; 31(11): 1531-1542, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34324645

ABSTRACT

Fractones, specialized extracellular matrix structures found in the subventricular zone (SVZ) neurogenic niche, can capture growth factors, such as basic fibroblast growth factor, from the extracellular milieu through a heparin-binding mechanism for neural stem cell (NSC) presentation, which promotes neurogenesis. During aging, a decline in neurogenesis correlates with a change in the composition of heparan sulfate (HS) within fractones. In this study, we used antibodies that recognize specific short oligosaccharides with varying sulfation to evaluate the HS composition in fractones in young and aged brains. To further understand the conditions that regulate 6-O sulfation levels and its impact on neurogenesis, we used endosulfatase Sulf1 and Sulf2 double knockout (DKO) mice. Fractones in the SVZ of Sulf1/2 DKO mice showed immunoreactivity for the HS epitope, suggesting higher 6-O sulfation. While neurogenesis declined in the aged SVZ of both wild-type and Sulf1/2 DKO mice, we observed a larger number of neuroblasts in the young and aged SVZ of Sulf1/2 DKO mice. Together, these results show that the removal of 6-O-sulfation in fractones HS by endosulfatases inhibits neurogenesis in the SVZ. Our findings advance the current understanding regarding the extracellular environment that is best suited for NSCs to thrive, which is critical for the design of future stem cell therapies.


Subject(s)
Heparitin Sulfate/metabolism , Lateral Ventricles/metabolism , Sulfatases/metabolism , Sulfotransferases/metabolism , Animals , Extracellular Matrix , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Neurogenesis , Stem Cell Niche , Sulfatases/deficiency , Sulfotransferases/deficiency
6.
Data Brief ; 23: 103718, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31372387

ABSTRACT

The corticospinal tract (CST) has a complex and long trajectory throughout the brain. Semaphorin 6A (Sema6A), a member of the semaphorin family, is one of the important regulators of CST axon guidance. Previous studies have shown that Sema6A knockout (KO) mice have CST defects at the midbrain-hindbrain boundary and medulla [1]. However, the route of the aberrant fibers remained unknown. Therefore here, to track the trajectory of the abnormal fibers, 3D images of the CST in adult mice were reconstructed from serial brain sections stained with anti-PKCγ antibody. Sema6A mutant brains showed CST defects that were more complex and variable than previously thought. In addition, 3D analysis helped us to identify a few new patterns of abnormal fibers. For more information about the data, please refer to an original research article, which has been recently published by Brain Research, "Remarkable complexity and variability of corticospinal tract defects in adult Semaphorin 6A knockout mice" [2].

7.
Brain Res ; 1710: 209-219, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30599138

ABSTRACT

The corticospinal tract (CST) has a complex and long trajectory that originates in the cerebral cortex and ends in the spinal cord. Semaphorin 6A (Sema6A), a member of the semaphorin family, is an important regulator of CST axon guidance. Previous studies have shown that postnatal Sema6A mutant mice have CST defects at the midbrain-hindbrain boundary and medulla. However, the routes the aberrant fibers take throughout the Sema6A mutant brain remain unknown. In this study, we performed 3D reconstruction of immunostained CST fibers to reevaluate the details of the abnormal CST trajectories in the brains of adult Sema6A mutant mice. Our results showed that the axon guidance defects reported in early postnatal mutants were consistently observed in adulthood. Those abnormal trajectories revealed by 3D analysis of brain sections were, however, more complex and variable than previously thought. In addition, 3D analysis allowed us to identify a few new patterns of aberrant projections. First, a subset of fibers that separated from and descended in parallel to the main bundle projected laterally at the caudal pons, subsequently changed direction by turning caudally, and extended to the medulla. Second, some abnormal fibers returned to the correct trajectory after deviating substantially from the original tract. Third, some fibers reached the pyramidal decussation normally but did not enter the dorsal funiculus. Section immunostaining combined with 3D reconstruction is a powerful method to track long projection fibers and to examine the entire nerve tracts of both normal and abnormal animals.


Subject(s)
Brain/growth & development , Pyramidal Tracts/growth & development , Semaphorins/physiology , Animals , Brain/cytology , Mice, Knockout , Neuroanatomical Tract-Tracing Techniques , Pyramidal Tracts/cytology , Semaphorins/genetics
8.
Front Mol Neurosci ; 12: 333, 2019.
Article in English | MEDLINE | ID: mdl-32038163

ABSTRACT

The corticospinal tract (CST) plays an important role in controlling voluntary movement. Because the CST has a long trajectory throughout the brain toward the spinal cord, many axon guidance molecules are required to navigate the axons correctly during development. Previously, we found that double-knockout (DKO) mouse embryos lacking the heparan sulfate endosulfatases, Sulf1 and Sulf2, showed axon guidance defects of the CST owing to the abnormal accumulation of Slit2 protein on the brain surface. However, postnatal development of the CST, especially the pyramidal decussation and spinal cord projection, could not be assessed because DKO mice on a C57BL/6 background died soon after birth. We recently found that Sulf1/2 DKO mice on a mixed C57BL/6 and CD-1/ICR background can survive into adulthood and therefore investigated the anatomy and function of the CST in the adult DKO mice. In Sulf1/2 DKO mice, abnormal dorsal deviation of the CST fibers on the midbrain surface persisted after maturation of the CST. At the pyramidal decussation, some CST fibers located near the midline crossed the midline, whereas others located more laterally extended ipsilaterally. In the spinal cord, the crossed CST fibers descended in the dorsal funiculus on the contralateral side and entered the contralateral gray matter normally, whereas the uncrossed fibers descended in the lateral funiculus on the ipsilateral side and entered the ipsilateral gray matter. As a result, the CST fibers that originated from 1 side of the brain projected bilaterally in the DKO spinal cord. Consistently, microstimulation of 1 side of the motor cortex evoked electromyogram responses only in the contralateral forelimb muscles of the wild-type mice, whereas the same stimulation evoked bilateral responses in the DKO mice. The functional consequences of the CST defects in the Sulf1/2 DKO mice were examined using the grid-walking, staircase, and single pellet-reaching tests, which have been used to evaluate motor function in mice. Compared with the wild-type mice, the Sulf1/2 DKO mice showed impaired performance in these tests, indicating deficits in motor function. These findings suggest that disruption of Sulf1/2 genes leads to both anatomical and functional defects of the CST.

9.
Sci Rep ; 7(1): 13847, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29062064

ABSTRACT

Heparan sulfate (HS) has been implicated in a wide range of cell signaling. Here we report a novel mechanism in which extracellular removal of 6-O-sulfate groups from HS by the endosulfatases, Sulf1 and Sulf2, is essential for axon guidance during development. In Sulf1/2 double knockout (DKO) mice, the corticospinal tract (CST) was dorsally displaced on the midbrain surface. In utero electroporation of Sulf1/2 into radial glial cells along the third ventricle, where Sulf1/2 mRNAs are normally expressed, rescued the CST defects in the DKO mice. Proteomic analysis and functional testing identified Slit2 as the key molecule associated with the DKO phenotype. In the DKO brain, 6-O-sulfated HS was increased, leading to abnormal accumulation of Slit2 protein on the pial surface of the cerebral peduncle and hypothalamus, which caused dorsal repulsion of CST axons. Our findings indicate that postbiosynthetic desulfation of HS by Sulfs controls CST axon guidance through fine-tuning of Slit2 presentation.


Subject(s)
Axon Guidance , Heparitin Sulfate/chemistry , Pyramidal Tracts/pathology , Spinal Cord Injuries/pathology , Sulfatases/physiology , Sulfates/metabolism , Sulfotransferases/physiology , Animals , Heparitin Sulfate/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Proteomics , Pyramidal Tracts/metabolism , Signal Transduction , Spinal Cord Injuries/metabolism , Sulfates/chemistry
10.
Sci Rep ; 7(1): 7739, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798413

ABSTRACT

Wnt signaling plays an important role in governing cell fate decisions. Coiled-coil-DIX1 (Ccd1), Dishevelled (Dvl), and Axin are signaling proteins that regulate the canonical pathway by controlling the stability of a key signal transducer ß-catenin. These proteins contain the DIX domain with a ubiquitin-like fold, which mediates their interaction in the ß-catenin destruction complex through dynamic head-to-tail polymerization. Despite high sequence similarities, mammalian Ccd1 shows weaker stimulation of ß-catenin transcriptional activity compared with zebrafish (z) Ccd1 in cultured cells. Here, we show that the mouse (m) Ccd1 DIX domain displays weaker ability for homopolymerization than that of zCcd1. Furthermore, X-ray crystallographic analysis of mCcd1 and zCcd1 DIX domains revealed that mCcd1 was assembled into a double-helical filament by the insertion of the ß1-ß2 loop into the head-to-tail interface, whereas zCcd1 formed a typical single-helical polymer similar to Dvl1 and Axin. The mutation in the contact interface of mCcd1 double-helical polymer changed the hydrodynamic properties of mCcd1 so that it acquired the ability to induce Wnt-specific transcriptional activity similar to zCcd1. These findings suggest a novel regulatory mechanism by which mCcd1 modulates Wnt signaling through auto-inhibition of dynamic head-to-tail homopolymerization.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Protein Interaction Domains and Motifs , Protein Multimerization , Wnt Signaling Pathway , Amino Acid Sequence , Animals , Binding Sites , Intracellular Signaling Peptides and Proteins/genetics , Mice , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Structure-Activity Relationship , Zebrafish
11.
Dev Neurosci ; 39(5): 361-374, 2017.
Article in English | MEDLINE | ID: mdl-28490013

ABSTRACT

Sulfatases (Sulfs) are a group of endosulfatases consisting of Sulf1 and Sulf2, which specifically remove sulfate from heparan sulfate proteoglycans. Although several studies have shown that Sulf1 acts as a regulator of sonic hedgehog (Shh) signaling during embryonic ventral spinal cord development, the detailed expression pattern and function of Sulf2 in the spinal cord remains to be determined. In this study, we found that Sulf2 also modulates the cell fate change from motor neurons (MNs) to oligodendrocyte precursor cells (OPCs) by regulating Shh signaling in the mouse ventral spinal cord in coordination with Sulf1. In the mouse, Sulf mRNAs colocalize with Shh mRNA and gradually expand dorsally from embryonic day (E) 10.5 to E12.5, following strong Patched1 signals (a target gene of Shh signaling). This coordinated expression pattern led us to hypothesize that in the mouse, strong Shh signaling is induced when Shh is released by Sulf1/2, and this strong Shh signaling subsequently induces the dorsal expansion of Shh and Sulf1/2 expression. Consistent with this hypothesis, in the ventral spinal cord of Sulf1 knockout (KO) or Sulf2 KO mice, the expression patterns of Shh and Patched1 differed from that in wild-type mice. Moreover, the position of the pMN and p3 domains were shifted ventrally, MN generation was prolonged, and OPC generation was delayed at E12.5 in both Sulf1 KO and Sulf2 KO mice. These results demonstrated that in addition to Sulf1, Sulf2 also plays an important and overlapping role in the MN-to-OPC fate change by regulating Shh signaling in the ventral spinal cord. However, neither Sulf1 nor Sulf2 could compensate for the loss of the other in the developing mouse spinal cord. In vitro studies showed no evidence of an interaction between Sulf1 and Sulf2 that could increase sulfatase activity. Furthermore, Sulf1/2 double heterozygote and Sulf1/2 double KO mice exhibited phenotypes similar to the Sulf1 KO and Sulf2 KO mice. These results indicate that there is a threshold for sulfatase activity (which is likely reflected in the dose of Shh) required to induce the MN-to-OPC fate change, and Shh signaling requires the coordinated activity of Sulf1 and Sulf2 in order to reach that threshold in the mouse ventral spinal cord.


Subject(s)
Hedgehog Proteins/metabolism , Motor Neurons/metabolism , Oligodendrocyte Precursor Cells/metabolism , Signal Transduction , Sulfatases/metabolism , Sulfotransferases/metabolism , Animals , Cell Differentiation/physiology , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/physiology , Spinal Cord/metabolism , Sulfatases/genetics , Sulfotransferases/genetics
12.
Am J Physiol Renal Physiol ; 310(5): F395-408, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26764203

ABSTRACT

Glomerular integrity and functions are maintained by growth factor signaling. Heparan sulfate, the major component of glomerular extracellular matrixes, modulates growth factor signaling, but its roles in glomerular homeostasis are unknown. We investigated the roles of heparan sulfate 6-O-endosulfatases, sulfatase (Sulf)1 and Sulf2, in glomerular homeostasis. Both Sulf1 and Sulf2 were expressed in the glomeruli of wild-type (WT) mice. Sulf1 and Sulf2 double-knockout (DKO) mice showed glomerular hypercellularity, matrix accumulation, mesangiolysis, and glomerular basement membrane irregularity. Platelet-derived growth factor (PDGF)-B and PDGF receptor-ß were upregulated in Sulf1 and Sulf2 DKO mice compared with WT mice. Glomeruli from Sulf1 and Sulf2 DKO mice in vitro stimulated by either PDGF-B, VEGF, or transforming growth factor-ß similarly showed reduction of phospho-Akt, phospho-Erk1/2, and phospho-Smad2/3, respectively. Since glomerular lesions in Sulf1 and Sulf2 DKO mice were reminiscent of diabetic nephropathy, we examined the effects of Sulf1 and Sulf2 gene disruption in streptozotocin-induced diabetes. Diabetic WT mice showed an upregulation of glomerular Sulf1 and Sulf2 mRNA by in situ hybridization. Diabetic DKO mice showed significant increases in albuminuria and serum creatinine and an acceleration of glomerular pathology without glomerular hypertrophy; those were associated with a reduction of glomerular phospho-Akt. In conclusion, Sulf1 and Sulf2 play indispensable roles to maintain glomerular integrity and protective roles in diabetic nephropathy, probably by growth factor modulation.


Subject(s)
Diabetic Nephropathies/enzymology , Heparitin Sulfate/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Kidney Glomerulus/drug effects , Receptors, Growth Factor/agonists , Signal Transduction/drug effects , Sulfatases/metabolism , Sulfotransferases/metabolism , Animals , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Genetic Predisposition to Disease , Kidney Glomerulus/enzymology , Kidney Glomerulus/pathology , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-sis/pharmacology , Receptors, Growth Factor/metabolism , Smad Proteins, Receptor-Regulated/metabolism , Sulfatases/deficiency , Sulfatases/genetics , Sulfotransferases/deficiency , Sulfotransferases/genetics , Time Factors , Tissue Culture Techniques , Transforming Growth Factor beta/pharmacology , Vascular Endothelial Growth Factor A/pharmacology
13.
J Neurochem ; 139 Suppl 2: 58-75, 2016 10.
Article in English | MEDLINE | ID: mdl-26709493

ABSTRACT

Neural circuits are formed with great precision during development. Accumulated evidence over the past three decades has demonstrated that growing axons are navigated toward their targets by the combined actions of attractants and repellents together with their receptors. It has long been known that proteoglycans, glycosylated proteins possessing covalently attached glycosaminoglycans, play a critical role in axon guidance; however, the molecular mechanisms by which proteoglycans regulate axon behaviors remain largely unknown. Glycosaminoglycans such as heparan sulfate and chondroitin sulfate are large linear polysaccharides composed of repeating disaccharide units that are highly modified by specific sulfation and epimerization. Recent biochemical and molecular biological studies have identified the enzymes that are involved in the biosynthesis of glycosaminoglycans. Interestingly, many mutants lacking glycosaminoglycan-synthesizing enzymes or proteoglycans in several model organisms show defects in specific nerve tract formation. In parallel, detailed biochemical studies have identified the molecular interactions between axon guidance molecules and glycosaminoglycans that have specific modification in their sugar chains. This review summarizes the structure and function of axon guidance molecules and glycosaminoglycans, and then tries to combine the knowledge from these studies to understand the role of proteoglycans from a new vantage point. Deciphering the sugar code is important for understanding the complicated nature of proteoglycans in axon guidance. Neural circuits are formed by the combined actions of axon guidance molecules. Proteoglycans play critical roles in regulating axon guidance through the interaction between signaling molecules and glycosaminoglycan chains attached to the core protein. This paper summarizes the structure and functions of axon guidance molecules and glycosaminoglycans and reviews the molecular mechanisms by which proteoglycans regulate axon guidance from a new vantage point. This article is part of the 60th Anniversary special issue.


Subject(s)
Axon Guidance/physiology , Axons/metabolism , Proteoglycans/metabolism , Animals , Glycosaminoglycans/metabolism , Humans , Nerve Regeneration/physiology
14.
Dev Dyn ; 244(2): 168-80, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25370455

ABSTRACT

BACKGROUND: Inner ear morphogenesis is tightly regulated by the temporally and spatially coordinated action of signaling ligands and their receptors. Ligand-receptor interactions are influenced by heparan sulfate proteoglycans (HSPGs), cell surface molecules that consist of glycosaminoglycan chains bound to a protein core. Diversity in the sulfation pattern within glycosaminoglycan chains creates binding sites for numerous cell signaling factors, whose activities and distribution are modified by their association with HSPGs. RESULTS: Here we describe the expression patterns of two extracellular 6-O-endosulfatases, Sulf1 and Sulf2, whose activity modifies the 6-O-sulfation pattern of HSPGs. We use in situ hybridization to determine the temporal and spatial distribution of transcripts during the development of the chick and mouse inner ear. We also use immunocytochemistry to determine the cellular localization of Sulf1 and Sulf2 within the sensory epithelia. Furthermore, we analyze the organ of Corti in Sulf1/Sulf2 double knockout mice and describe an increase in the number of mechanosensory hair cells. CONCLUSIONS: Our results suggest that the tuning of intracellular signaling, mediated by Sulf activity, plays an important role in the development of the inner ear.


Subject(s)
Avian Proteins/biosynthesis , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Enzymologic/physiology , Organ of Corti/embryology , Sulfatases/biosynthesis , Sulfotransferases/biosynthesis , Animals , Chick Embryo , Mice , Organ of Corti/cytology , Signal Transduction/physiology
15.
Neurosci Res ; 77(4): 234-41, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24080146

ABSTRACT

TDP-43 is a discriminative protein that is found as intracellular aggregations in the neurons of the cerebral cortex and spinal cord of patients with amyotrophic lateral sclerosis (ALS); however, the mechanisms of neuron loss and its relation to the aggregations are still unclear. In this study, we generated a useful model to produce TDP-43 aggregations in the motor cortex using in utero electroporation on mouse embryos. The plasmids used were full-length TDP-43 and C-terminal fragments of TDP-43 (wild-type or M337V mutant) tagged with GFP. For the full-length TDP-43, both wild-type and mutant, electroporated TDP-43 localized mostly in the nucleus, and though aggregations were detected in embryonic brains, they were very rarely observed at P7 and P21. In contrast, TDP-43 aggregations were generated in the brains electroporated with the C-terminal TDP-43 fragments as previously reported in in vitro experiments. TDP-43 protein was distributed diffusely-not only in the nucleus, but also in the cytoplasm-and the inclusion bodies were ubiquitinated and included phosphorylated TDP-43, which reflects the human pathology of ALS. This model using in utero electroporation of pathogenic genes into the brain of the mouse will likely become a useful model for studying ALS and also for evaluation of agents for therapeutic purpose, and may be applicable to other neurodegenerative diseases, as well.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Disease Models, Animal , Motor Cortex/metabolism , Amyotrophic Lateral Sclerosis/embryology , Animals , Electroporation , Female , HEK293 Cells , Humans , Mice , Mice, Inbred ICR , Motor Cortex/embryology , Pregnancy
16.
Sci Rep ; 3: 1402, 2013.
Article in English | MEDLINE | ID: mdl-23466678

ABSTRACT

Neuregulin-1 binds to ErbB3 and ErbB4 and regulates cancer proliferation and differentiation. Neuregulin-1 had been suggested to also react with ErbB2, but this argument becomes controversial. Here, we re-evaluated the cellular responses and ErbB2 interaction of neuregulin-1 in ErbB2 overexpressing cell lines. In a competitive ligand-binding assay, we detected significant replacement of [(35)S]-labeled neuregulin-1 with nano molar ranges of cold neuregulin-1 in L929 cells expressing ErbB2 alone and SKOV3 cells carrying sulf-1 cDNA but not in these parental cells. The concentration of neuregulin-1 significantly decreased thymidine incorporation and phosphorylation of ErbB2 (Tyr877, Tyr1396, and Tyr1121) in ErbB2-overexpressing cancer cells as well as in L929 cells expressing ErbB2. A crosslinking assay ascertained the presence of neuregulin-1 immunoreactivity in the ErbB2 immune complexes of L929 expressing ErbB2 alone. These results suggest that the higher concentrations of neuregulin-1 exert an anti-oncogenic activity to attenuate ErbB2 auto-phosphorylation potentially through its low-affinity interaction with ErbB2.


Subject(s)
Neuregulin-1/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Binding, Competitive , Cell Line , Cell Proliferation/drug effects , Gene Expression , Humans , Neuregulin-1/pharmacology , Phosphorylation , Protein Binding , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism
17.
J Exp Med ; 209(5): 925-33, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22493518

ABSTRACT

Rheumatoid arthritis is a destructive arthropathy characterized by chronic synovial inflammation that imposes a substantial socioeconomic burden. Under the influence of the proinflammatory milieu, synovial fibroblasts (SFs), the main effector cells in disease pathogenesis, become activated and hyperplastic, releasing proinflammatory factors and tissue-remodeling enzymes. This study shows that activated arthritic SFs from human patients and animal models express significant quantities of autotaxin (ATX; ENPP2), a lysophospholipase D that catalyzes the conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA). ATX expression from SFs was induced by TNF, and LPA induced SF activation and effector functions in synergy with TNF. Conditional genetic ablation of ATX in mesenchymal cells, including SFs, resulted in disease attenuation in animal models of arthritis, establishing the ATX/LPA axis as a novel player in chronic inflammation and the pathogenesis of arthritis and a promising therapeutic target.


Subject(s)
Arthritis, Experimental/physiopathology , Arthritis, Rheumatoid/physiopathology , Fibroblasts/metabolism , Phosphoric Diester Hydrolases/metabolism , RNA, Messenger/metabolism , Synovial Membrane/cytology , Animals , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Chromatography, Liquid , Galactosides , Gene Deletion , Humans , Immunohistochemistry , Indoles , Lysophospholipids/metabolism , Mass Spectrometry , Mice , Mice, Knockout , Phosphoric Diester Hydrolases/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/metabolism
18.
J Biol Chem ; 287(12): 9579-90, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22298771

ABSTRACT

Heparan sulfate endosulfatases Sulf1 and Sulf2 hydrolyze 6-O-sulfate in heparan sulfate, thereby regulating cellular signaling. Previous studies have revealed that Sulfs act predominantly on UA2S-GlcNS6S disaccharides and weakly on UA-GlcNS6S disaccharides. However, the specificity of Sulfs and their role in sulfation patterning of heparan sulfate in vivo remained unknown. Here, we performed disaccharide analysis of heparan sulfate in Sulf1 and Sulf2 knock-out mice. Significant increases in ΔUA2S-GlcNS6S were observed in the brain, small intestine, lung, spleen, testis, and skeletal muscle of adult Sulf1(-/-) mice and in the brain, liver, kidney, spleen, and testis of adult Sulf2(-/-) mice. In addition, increases in ΔUA-GlcNS6S were seen in the Sulf1(-/-) lung and small intestine. In contrast, the disaccharide compositions of chondroitin sulfate were not primarily altered, indicating specificity of Sulfs for heparan sulfate. For Sulf1, but not for Sulf2, mRNA expression levels in eight organs of wild-type mice were highly correlated with increases in ΔUA2S-GlcNS6S in the corresponding organs of knock-out mice. Moreover, overall changes in heparan sulfate compositions were greater in Sulf1(-/-) mice than in Sulf2(-/-) mice despite lower levels of Sulf1 mRNA expression, suggesting predominant roles of Sulf1 in heparan sulfate desulfation and distinct regulation of Sulf activities in vivo. Sulf1 and Sulf2 mRNAs were differentially expressed in restricted types of cells in organs, and consequently, the sulfation patterns of heparan sulfate were locally and distinctly altered in Sulf1 and Sulf2 knock-out mice. These findings indicate that Sulf1 and Sulf2 differentially contribute to the generation of organ-specific sulfation patterns of heparan sulfate.


Subject(s)
Extracellular Space/enzymology , Heparitin Sulfate/metabolism , Proteins/metabolism , Sulfotransferases/metabolism , Animals , Brain/enzymology , Brain/metabolism , Extracellular Space/genetics , Heparitin Sulfate/chemistry , Kidney/enzymology , Kidney/metabolism , Lung/enzymology , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Organ Specificity , Proteins/genetics , Sulfotransferases/genetics
19.
Genes Cells ; 16(10): 1012-21, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21895889

ABSTRACT

Rho-associated coiled-coil-forming protein serine/threonine kinase (ROCK) consisting of two isoforms, ROCK-I and ROCK-II, functions downstream of the small GTPase Rho for assembly of actomyosin bundles. To examine the role of ROCK isoforms in vivo, we previously generated and examined mice deficient in each of the two isoforms individually. Here, we further examined the in vivo role of ROCK isoforms by generating mice deficient in both isoforms. Cross-mating of ROCK-I(+/-) ROCK-II(+/-) double heterozygous mice showed that all of the ROCK-I(-/-) ROCK-II(-/-) homozygous mice die in utero before 9.5 days post-coitum (dpc) and ROCK-I(-/-) ROCK-II(+/-) homo-heterozygous or ROCK-I(+/-) ROCK-II(-/-) hetero-homozygous mice die during a period from 9.5 to 12.5 dpc, whereas mice of other genotypes survive until 12.5 dpc with the expected Mendelian ratio. All of the ROCK-I(+/-) ROCK-II(-/-) or ROCK-I(-/-) ROCK-II(+/-) mice showed impaired body turning and defective vascular remodeling in the yolk sac. Impairment of vascular remodeling was also observed in wild-type embryos treated ex vivo with a ROCK inhibitor, Y-27632. These results suggest that ROCK isoforms function redundantly during embryogenesis and play a critical role in vascular development.


Subject(s)
Yolk Sac/blood supply , Yolk Sac/enzymology , rho-Associated Kinases/deficiency , Animals , Female , Gene Expression Regulation, Developmental , Genotype , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Morphogenesis/genetics , Mutation/genetics , Neovascularization, Pathologic/enzymology , Neovascularization, Pathologic/genetics , Phenotype , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
20.
Article in English | MEDLINE | ID: mdl-21795788

ABSTRACT

Coiled-coil DIX1 (Ccd1) is a positive regulator that activates the canonical Wnt signalling pathway by inhibiting the degradation of the key signal transducer ß-catenin. The C-terminal DIX domain of Ccd1 plays an important role in the regulation of signal transduction through homo-oligomerization and protein complex formation with other DIX domain-containing proteins, i.e. axin and dishevelled proteins. Here, the expression, purification, crystallization and X-ray data collection of the Ccd1 DIX domain are reported. The crystals of the Ccd1 DIX domain belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=72.9, b=75.7, c=125.6 Å. An X-ray diffraction data set was collected at 3.0 Šresolution.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Signal Transduction , Animals , Crystallography, X-Ray , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Wnt Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...