Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 11(3)2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29522455

ABSTRACT

The inverse magnetostrictive effect is an effective property for energy harvesting; the material needs to have large magnetostriction and ease of mass production. Fe-Co alloys being magnetostrictive materials have favorable characteristics which are high strength, ductility, and excellent workability, allowing easy fabrication of Fe-Co alloy fibers. In this study, we fabricated magnetostrictive polymer composites, in which Fe-Co fibers were woven into polyester fabric, and discussed their sensor performance. Compression and bending tests were carried out to measure the magnetic flux density change, and the effects of magnetization, bias magnetic field, and the location of the fibers on the performance were discussed. It was shown that magnetic flux density change due to compression and bending is related to the magnetization of the Fe-Co fiber and the bias magnetic field. The magnetic flux density change of Fe-Co fiber reinforced plastics was larger than that of the plastics with Terfenol-D particles.

2.
Adv Mater ; 28(22): 4485-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26618790

ABSTRACT

A wearable keyboard is demonstrated in which conducting polymer electrodes on a knitted textile sense tactile input as changes in capacitance. The use of a knitted textile as a substrate endows stretchability and compatibility to large-area formats, paving the way for a new type of wearable human-machine interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...