Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Front Plant Sci ; 12: 642758, 2021.
Article in English | MEDLINE | ID: mdl-33643370

ABSTRACT

The correct development of a diploid sporophyte body and a haploid gametophyte relies on a strict coordination between cell divisions in space and time. During plant reproduction, these divisions have to be temporally and spatially coordinated with cell differentiation processes, to ensure a successful fertilization. Armadillo BTB Arabidopsis protein 1 (ABAP1) is a plant exclusive protein that has been previously reported to control proliferative cell divisions during leaf growth in Arabidopsis. Here, we show that ABAP1 binds to different transcription factors that regulate male and female gametophyte differentiation, repressing their target genes expression. During male gametogenesis, the ABAP1-TCP16 complex represses CDT1b transcription, and consequently regulates microspore first asymmetric mitosis. In the female gametogenesis, the ABAP1-ADAP complex represses EDA24-like transcription, regulating polar nuclei fusion to form the central cell. Therefore, besides its function during vegetative development, this work shows that ABAP1 is also involved in differentiation processes during plant reproduction, by having a dual role in regulating both the first asymmetric cell division of male gametophyte and the cell differentiation (or cell fusion) of female gametophyte.

2.
Rev. bras. biol ; 56(supl.1,pt.1): 113-22, Dec. 1996. ilus, graf
Article in English | LILACS | ID: lil-196835

ABSTRACT

Nitric oxide (NO) is synthesized in cells of both the central and peripheral nervous system and has been implicated in several forms of synaptic plasticity. The enzyme that produces NO, nitric oxide synthase (NOS), can be visualized in the brain by the reduced nicotinamide adenine dinucleotide phosphate diaphorase histochemistry technique (NADPH-d). We have used NADPH-d activity to detect the presence of NOS-positive cells in the developing rat superior colliculus. Our results showed that NOS is present in cells and neuropil in the developing and adult rat superior colliculus. The first NOS-positive cells appeared at postnatal day 7 and were weakly stained. The number and intensity of the NOS-positive cells increased progressively during the following days reaching a maximum at postnatal day 15. By the end of the third postnatal week, both the number and intensity of stained cells showed an adult-like pattern. The NOS-positive cells showed a Golgi-like mosphology and we have found that all cell types present in the superior colliculus express the enzyme. The expression of NOS by tectal cells parallels the functional development of the retino-collicular and cortico-tectal projections and suggest that nitric oxide synthase-positive cells might be involved in this process. In this review we highlighted some of the recent descriptions of the expression of NOS in the mammalian visual system with emphasis in the superior colliculus and correlate these findings with several developmental events taking place in this structure.


Subject(s)
Rats , Animals , NADPH Dehydrogenase , Neuronal Plasticity/physiology , Nitric Oxide Synthase/isolation & purification , Nitric Oxide/biosynthesis , Superior Colliculi/physiology , Visual Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...