Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36836828

ABSTRACT

Lead (Pb) is a widespread heavy metal pollutant that interferes with plant growth. In this study, we investigated the effects of Pb on the mechanical and chemical properties of cell walls and on the growth of coleoptiles of rice (Oryza sativa L.) seedlings grown in the air (on moistened filter paper) and underwater (submerged condition). Coleoptile growth of air-grown seedlings was reduced by 40% by the 3 mM Pb treatment, while that of water-grown ones was reduced by 50% by the 0.5 mM Pb. Although the effective concentration of Pb for growth inhibition of air-grown coleoptiles was much higher than that of water-grown ones, Pb treatment significantly decreased the mechanical extensibility of the cell wall in air- and water-grown coleoptiles, when it inhibited their growth. Among the chemical components of coleoptile cell walls, the amounts of cell wall polysaccharides per unit fresh weight and unit length of coleoptile, which represent the thickness of the cell wall, were significantly increased in response to the Pb treatment (3 mM and 0.5 mM Pb for air- and water-grown seedlings, respectively), while the levels of cell wall-bound diferulic acids (DFAs) and ferulic acids (FAs) slightly decreased. These results indicate that Pb treatment increased the thickness of the cell wall but not the phenolic acid-mediated cross-linking structures within the cell wall in air- and water-grown coleoptiles. The Pb-induced cell wall thickening probably causes the mechanical stiffening of the cell wall and thus decreases cell wall extensibility. Such modifications of cell wall properties may be associated with the inhibition of coleoptile growth. The results of this study provide a new finding that Pb-induced cell wall remodeling contributes to the regulation of plant growth under Pb stress conditions via the modification of the mechanical property of the cell wall.

2.
J Contam Hydrol ; 253: 104125, 2023 02.
Article in English | MEDLINE | ID: mdl-36587422

ABSTRACT

People living in the Great Rift Valley in East Africa suffer from fluorosis resulting from their consumption of groundwater. This paper shows that geogenic fluoride contamination in a natural water system has changed in the last two decades in the Mt. Meru slope area of northern Tanzania based on water quality, dating of the residence time, and stable isotopes of groundwater. The results demonstrate that 1) the average recharge altitude of groundwater with a high geogenic fluoride concentration is estimated to range from 1900 m to 3000 m on the southern slope of Mt. Meru, and the fluoride concentration tends to increase with an increase in the recharge altitude, 2) the fluoride concentration increases with increasing groundwater residence time for groundwater with a residence time of 20 years or longer, suggesting that water-rock interaction processes (weathering, dissolution, and ion exchange), which depend on the contact time between the volcanic aquifer and groundwater, have predominated for approximately 20 years or longer, and 3) the mixing of aerobic young water and old groundwater has been active for approximately 20 years, and the fluoride concentration is increasing in some shallower well waters. The mixing of fluoride-contaminated groundwater with aerobic water infiltrating the aquifer through pumping groundwater in the last two decades may increase the spread of groundwater contaminated with fluoride due to increased water demand caused by rapid population growth, and urbanization, industrial growth, and the expansion of irrigated agriculture.


Subject(s)
Groundwater , Water Pollutants, Chemical , Humans , Fluorides/analysis , Tanzania , Water Pollutants, Chemical/analysis , Water Quality , Environmental Monitoring
3.
Orig Life Evol Biosph ; 47(1): 83-92, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27072833

ABSTRACT

DL-Alanine (Ala) was heated with/without powdered olivine and water at 120 °C for 8 days to investigate the formation of the diastereoisomers of piperazine-2,5-dione (diketopiperazine, DKP). When only DL-Ala was heated with a small amount of water, 3.0 % of DL-Ala changed to cis- and trans-DKP after 8 days. DKPs were not detected after heating when no water was added. The presence of a small amount of water is important factor controlling peptide production rates under thermal conditions. When DL-Ala was heated with olivine powder for 8 days, the yields of cis- and trans-DKP were 6.8 and 4.9 %, respectively. The high yield of cis-DKP compared with trans-DKP was attributed to greater thermal stability of cis-DKP. After heating for 8 days, the diastereoisomeric excess of cis-DKP without olivine was 7.3 %, whereas a much higher value of 16.3 % was obtained in the presence of olivine. Taken together, these results show that olivine is not only an efficient catalyst for the formation of DKPs but that it also play a significant role in determining the diastereoisomer selectivity of these cyclic dipeptides.


Subject(s)
Alanine/chemistry , Diketopiperazines/chemistry , Evolution, Chemical , Iron Compounds/chemistry , Magnesium Compounds/chemistry , Silicates/chemistry , Water/chemistry , Catalysis , Stereoisomerism
4.
Orig Life Evol Biosph ; 44(1): 13-28, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24917118

ABSTRACT

The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.


Subject(s)
Bentonite/chemistry , Evolution, Chemical , Glycine/chemistry , Peptides/chemistry , Aluminum Silicates/chemistry , Clay , Hot Temperature , Minerals/chemistry , Origin of Life , Water/chemistry
5.
Arch Environ Contam Toxicol ; 56(4): 693-706, 2009 May.
Article in English | MEDLINE | ID: mdl-18937006

ABSTRACT

Highly contaminated groundwater, with arsenic (As) and fluoride (F(-)) concentrations of up to 2.4 and 22.8 mg/L, respectively, has been traced to anthropogenic inputs to the soil. In the present study, samples collected from the soil surface and sediments from the most heavily polluted area of Punjab were analyzed to determine the F(-) and As distribution in the soil. The surface soils mainly comprise permeable aeolian sediment on a Pleistocene terrace and layers of sand and silt on an alluvial flood plain. Although the alluvial sediments contain low levels of F, the terrace soils contain high concentrations of soluble F(-) (maximum, 16 mg/kg; mean, 4 mg/kg; pH > 8.0). Three anthropogenic sources were identified as fertilizers, combusted coal, and industrial waste, with phosphate fertilizer being the most significance source of F(-) accumulated in the soil. The mean concentration of As in the surface soil samples was 10.2 mg/kg, with the highest concentration being 35 mg/kg. The presence of high levels of As in the surface soil implies the contribution of air pollutants derived from coal combustion and the use of fertilizers. Intensive mineral weathering under oxidizing conditions produces highly alkaline water that dissolves the F(-) and As adsorbed on the soil, thus releasing it into the local groundwater.


Subject(s)
Arsenicals/analysis , Fluorides/analysis , Fresh Water/chemistry , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Pakistan , Particle Size , Water Movements
6.
J Environ Qual ; 37(2): 409-16, 2008.
Article in English | MEDLINE | ID: mdl-18268304

ABSTRACT

We describe the anthropogenic impacts on the major dissolved elements (Cl(-), NO(3)(-)-N, SO(4)(2-), and Na(+)) in the water from the Minjiang River (a headwater tributary of the Yangtze River) and upper Yangtze River in relation to increasing human activity. The major element chemistry and hydrogen, oxygen, and sulfur isotopic compositions were investigated. When the Minjiang River flows through the populated Sichuan Basin, the concentrations of Cl(-), NO(3)(-)-N, SO(4)(2-), and Na(+) gradually increase. The increasing SO(4)(2-) in the highly polluted Minjiang River had high delta(34)S values (+6.3 to approximately +13.6 per thousand), implicating the anthropogenic sources of sulfur from air pollutants, domestic wastewater, industrial effluents, and agricultural fertilizers. The water quality of the upper Yangtze River does not worsen after receiving the Minjiang River because the water from the lightly polluted Jinshajiang River contributes most of the total flux in the Yangtze River. However, these rivers deserve attention and further research because the Yangtze River is the most important river in China in terms of water quality.


Subject(s)
Rivers/chemistry , Water Pollutants, Chemical/analysis , China , Chlorides/analysis , Deuterium/analysis , Environmental Monitoring , Fluorides/analysis , Metals/analysis , Nitrates/analysis , Oxygen Isotopes/analysis , Quaternary Ammonium Compounds/analysis , Silicon Dioxide/analysis , Sulfates/analysis , Sulfur Isotopes/analysis
7.
Appl Environ Microbiol ; 73(7): 2110-7, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17277228

ABSTRACT

International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.


Subject(s)
Archaea/classification , Hot Springs/microbiology , RNA, Ribosomal, 16S/genetics , Archaea/genetics , Base Composition , Cloning, Molecular , Hot Temperature , Phylogeny , Polymerase Chain Reaction
8.
Environ Pollut ; 145(3): 839-49, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16777300

ABSTRACT

The present study is the first attempt to put forward possible sources of As, F- and SO4(2-) contaminated groundwater in the Kalalanwala area, Punjab, Pakistan. Five rainwater and 24 groundwater samples from three different depths were analyzed. Shallow groundwater from 24 to 27 m depth contained high F- (2.47-21.1mg/L), while the groundwater samples from the deeper depth were free from fluoride contamination. All groundwater samples contained high As (32-1900 microg/L), in excess of WHO drinking water standards. The SO4(2-) ranges from 110 to 1550 mg/L. Delta34S data indicate three sources for SO4(2-) air pollutants (5.5-5.7 per thousand), fertilizers (4.8 per thousand), and household waste (7.0 per thousand). Our important finding is the presence of SO4(2-), As and F- in rainwater, indicating the contribution of these elements from air pollution. We propose that pollutants originate, in part, from coal combusted at brick factories and were mobilized promotionally by the alkaline nature of the local groundwater.


Subject(s)
Arsenic/analysis , Fluorides/analysis , Water Pollutants, Chemical/analysis , Air Pollutants/analysis , Coal , Environmental Monitoring/methods , Fresh Water/analysis , Hydrogen-Ion Concentration , Ions/analysis , Pakistan , Rain , Sulfur Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...