Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 113(4): 906-15, 2009 Jan 29.
Article in English | MEDLINE | ID: mdl-19127986

ABSTRACT

We studied the concentration dependence of nu(C-H)'s in IR and (1)J(C,H) in NMR for binary water-tetrahydrofuran (THF) mixtures and found different trends for the two types of CH(2) groups in the five-membered ring. The changes of the nu(C-O) spectra showed that complexes of THF associated with water are formed, in which the number of water molecules increases with the water concentration. We suggested that hydration proceeds through the formation of 1:1, and 1:2 complexes of [THF:water] up to X(H(2)O) approximately 0.9, where X(H)((2))(O) is the mole fraction of the water in the mixtures. We carried out ab initio MO and DFT calculations to optimize the geometries of a THF dimer as a model of THF molecules in pure liquid, and 1:1 and 1:2 complexes of [THF:water] to simulate observed concentration dependence of nu(C-H)'s in IR and (1)J(C,H) in NMR. The changes of the calculated nu(C-H) spectra and (1)J(C,H) values for the optimized complexes are in agreement with those observed with varying X(H)((2))(O), supporting our proposal. From the vibrational and NBO analyses of the optimized complexes, the observed blue shift of nu(C-H)'s and the increase of (1)J(C,H) for the CH(2) groups neighboring to the ether oxygen were explained in terms of the changes in the stereoelectronic effect, resulting from HO-H...O< hydrogen bonding. The optimized 1:2-complex contains two weak C-H...OH(2) hydrogen bonds, and blue shift of nu(C-H)'s and increase of (1)J(C,H) were demonstrated from the same analyses of the complexes. This result of simulation also supports that the blue shift of nu(C-H)'s and increase of (1)J(C,H) observed for both the type of CH(2) groups at 0.6 X(H)((2))(O) < 0.9 are attributed to these interactions. On the basis of all these results, we propose that the formation of the 1:2-complex involving weak C-H...OH(2) hydrogen bonds is responsible dominantly for the hydrophobic hydration of THF.

SELECTION OF CITATIONS
SEARCH DETAIL
...