Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 55: 92-103, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25152379

ABSTRACT

Pulse-wave velocity (PWV) is an important index for diagnosing cardiovascular diseases. The pulse wave is volumetric change induced by heartbeat or inflowing blood, and significantly depends on the propagating path and stiffness of the artery. In this study, PWV of the propagating wave was visualized using spatial compound imaging with high temporal resolution. The frame rate was 1000 Hz, or a time interval of 1 ms. Subjects were four young healthy males and one young healthy female (n=5, age: 23.8±1.17 years old), and the measurement area was the right common carotid artery. PWVs in four phases (the four phases of heart valve opening and closing) were investigated during a cardiac cycle. In phase I, the heart pulsates. In phase II, the tricuspid and mitral valves close, and the aortic and pulmonic valves open. In phase III, the tricuspid and mitral valves open, and the aortic and pulmonic valves close. In phase IV, the propagating wave is reflected. PWVs in phases II and III were easily observed. PWVs were 3.52±1.11 m/s in phase I, 5.62±0.30 m/s in phase II, 7.94±0.85 m/s in phase III, and -4.60±0.99 m/s for the reflective wave. PWV was measured using Spatial Compound Imaging with high temporal resolution, and the PWV in each phase may be used as the index for diagnosing stages of arteriosclerosis progression.


Subject(s)
Carotid Artery, Common/diagnostic imaging , Pulse Wave Analysis/methods , Aortic Valve/physiology , Female , Humans , In Vitro Techniques , Male , Mitral Valve/physiology , Pulmonary Valve/physiology , Tricuspid Valve/physiology , Ultrasonography , Young Adult
2.
Article in English | MEDLINE | ID: mdl-25571138

ABSTRACT

Precise measurement of blood flow is important because blood flow closely correlates formation of thrombus and atherosclerotic plaque. Among clinically applied modalities for blood flow measurement, color Doppler ultrasound shows two-dimensional (2D) distribution of one-dimensional blood flow component along the ultrasound beam. In the present study, 2D blood flow vector is obtained with high temporal and bidirectional Doppler ultrasound technique. Linear array probe with the central frequency of 7.5 MHz and an ultrasound data acquisition system with 128 transmit and 128 receive channels were equipped. Frame rate of 5 kHz was achieved by parallel receive beam forming with a wide transmitted wave. The flow velocity was measured from two different angles by beam steering. The interval of two measurements was 0.8 msec and it was considered as almost one moment to obtain 2D blood flow vector. B-mode image and 2D blood flow vector of the pulsatile flow in a carotid artery model showed small vortex at the bifurcation area. The method was also applied for visualization of in vivo blood flow vector in human carotid arteries. 2D blood flow measurement may predict the risk area of thrombus and plaque formation induced by abnormal blood flow.


Subject(s)
Carotid Artery, Common/diagnostic imaging , Blood Flow Velocity , Carotid Artery Diseases/diagnostic imaging , Humans , Imaging, Three-Dimensional , Pulsatile Flow , Regional Blood Flow , Ultrasonography, Doppler/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...