Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 31(3): 564-577.e12, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33259791

ABSTRACT

Wounding and infection trigger a protective innate immune response that includes the production of antimicrobial peptides in the affected tissue as well as increased sleep. Little is known, however, how peripheral wounds or innate immunity signal to the nervous system to increase sleep. We found that, during C. elegans larval molting, an epidermal tolloid/bone morphogenic protein (BMP)-1-like protein called NAS-38 promotes sleep. NAS-38 is negatively regulated by its thrombospondin domain and acts through its astacin protease domain to activate p38 mitogen-activated protein (MAP)/PMK-1 kinase and transforming growth factor ß (TGF-ß)-SMAD/SMA-3-dependent innate immune pathways in the epidermis that cause STAT/STA-2 and SLC6 (solute carrier)/SNF-12-dependent expression of antimicrobial peptide (AMP) genes. We show that more than a dozen epidermal AMPs act as somnogens, signaling across tissues to promote sleep through the sleep-active RIS neuron. In the adult, epidermal injury activates innate immunity and turns up AMP production to trigger sleep, a process that requires epidermal growth factor receptor (EGFR) signaling that is known to promote sleep following cellular stress. We show for one AMP, neuropeptide-like protein (NLP)-29, that it acts through the neuropeptide receptor NPR-12 in locomotion-controlling neurons that are presynaptic to RIS and that depolarize this neuron to induce sleep. Sleep in turn increases the chance of surviving injury. Thus, we found a novel mechanism by which peripheral wounds signal to the nervous system to increase protective sleep. Such a cross-tissue somnogen-signaling function of AMPs might also boost sleep in other animals, including humans.


Subject(s)
Immunity, Innate , Animals , Humans , Antimicrobial Peptides , Caenorhabditis elegans , Caenorhabditis elegans Proteins , Epidermis , Sleep
2.
PLoS Biol ; 18(2): e3000361, 2020 02.
Article in English | MEDLINE | ID: mdl-32078631

ABSTRACT

Sleep-active neurons depolarize during sleep to suppress wakefulness circuits. Wake-active wake-promoting neurons in turn shut down sleep-active neurons, thus forming a bipartite flip-flop switch. However, how sleep is switched on is unclear because it is not known how wakefulness is translated into sleep-active neuron depolarization when the system is set to sleep. Using optogenetics in Caenorhabditis elegans, we solved the presynaptic circuit for depolarization of the sleep-active RIS neuron during developmentally regulated sleep, also known as lethargus. Surprisingly, we found that RIS activation requires neurons that have known roles in wakefulness and locomotion behavior. The RIM interneurons-which are active during and can induce reverse locomotion-play a complex role and can act as inhibitors of RIS when they are strongly depolarized and as activators of RIS when they are modestly depolarized. The PVC command interneurons, which are known to promote forward locomotion during wakefulness, act as major activators of RIS. The properties of these locomotion neurons are modulated during lethargus. The RIMs become less excitable. The PVCs become resistant to inhibition and have an increased capacity to activate RIS. Separate activation of neither the PVCs nor the RIMs appears to be sufficient for sleep induction; instead, our data suggest that they act in concert to activate RIS. Forward and reverse circuit activity is normally mutually exclusive. Our data suggest that RIS may be activated at the transition between forward and reverse locomotion states, perhaps when both forward (PVC) and reverse (including RIM) circuit activity overlap. While RIS is not strongly activated outside of lethargus, altered activity of the locomotion interneurons during lethargus favors strong RIS activation and thus sleep. The control of sleep-active neurons by locomotion circuits suggests that sleep control may have evolved from locomotion control. The flip-flop sleep switch in C. elegans thus requires an additional component, wake-active sleep-promoting neurons that translate wakefulness into the depolarization of a sleep-active neuron when the worm is sleepy. Wake-active sleep-promoting circuits may also be required for sleep state switching in other animals, including in mammals.


Subject(s)
Locomotion/physiology , Neurons/physiology , Sleep Stages/physiology , Wakefulness/physiology , Animals , Arousal/physiology , Behavior, Animal/physiology , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Calcium/metabolism , Homeostasis , Interneurons/metabolism , Interneurons/physiology , Larva/physiology , Neural Pathways/physiology , Neurons/metabolism , Optogenetics
3.
Nat Commun ; 10(1): 4095, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506439

ABSTRACT

Animals must slow or halt locomotion to integrate sensory inputs or to change direction. In Caenorhabditis elegans, the GABAergic and peptidergic neuron RIS mediates developmentally timed quiescence. Here, we show RIS functions additionally as a locomotion stop neuron. RIS optogenetic stimulation caused acute and persistent inhibition of locomotion and pharyngeal pumping, phenotypes requiring FLP-11 neuropeptides and GABA. RIS photoactivation allows the animal to maintain its body posture by sustaining muscle tone, yet inactivating motor neuron oscillatory activity. During locomotion, RIS axonal Ca2+ signals revealed functional compartmentalization: Activity in the nerve ring process correlated with locomotion stop, while activity in a branch correlated with induced reversals. GABA was required to induce, and FLP-11 neuropeptides were required to sustain locomotion stop. RIS attenuates neuronal activity and inhibits movement, possibly enabling sensory integration and decision making, and exemplifies dual use of one cell across development in a compact nervous system.


Subject(s)
Caenorhabditis elegans/physiology , Calcium/metabolism , GABAergic Neurons/metabolism , Locomotion/physiology , Neuropeptides/metabolism , Sleep/physiology , Animals , Axons/metabolism , Caenorhabditis elegans/cytology , Cholinergic Neurons/physiology , Gap Junctions/metabolism , Light , Models, Biological , Motor Neurons/physiology , Muscles/cytology , Phenotype , Signal Transduction , gamma-Aminobutyric Acid/metabolism
4.
Curr Biol ; 28(22): 3610-3624.e8, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30416057

ABSTRACT

Sleep is ancient and fulfills higher brain functions as well as basic vital processes. Little is known about how sleep emerged in evolution and what essential functions it was selected for. Here, we investigated sleep in Caenorhabditis elegans across developmental stages and physiological conditions to find out when and how sleep in a simple animal becomes essential for survival. We found that sleep in worms occurs during most stages and physiological conditions and is typically induced by the sleep-active RIS neuron. Food quality and availability determine sleep amount. Extended starvation, which induces developmental arrest in larvae, presents a major sleep trigger. Conserved nutrient-sensing regulators of longevity and developmental arrest, AMP-activated kinase and FoxO, act in parallel to induce sleep during extended food deprivation. These metabolic factors can act in multiple tissues to signal starvation to RIS. Although sleep does not appear to be essential for a normal adult lifespan, it is crucial for survival of starvation-induced developmental arrest in larvae. Rather than merely saving energy for later use, sleep counteracts the progression of aging phenotypes, perhaps by allocating resources. Thus, sleep presents a protective anti-aging program that is induced by nutrient-sensing longevity pathways to survive starvation-induced developmental arrest. All organisms are threatened with the possibility of experienced famine in their life, which suggests that the molecular coupling of starvation, development, aging, and sleep was selected for early in the evolution of nervous systems and may be conserved in other species, including humans.


Subject(s)
Aging , Caenorhabditis elegans/growth & development , Gene Expression Regulation, Developmental , Sleep/physiology , Starvation , AMP-Activated Protein Kinase Kinases , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cells, Cultured , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Insulin/genetics , Insulin/metabolism , Neurons/cytology , Neurons/physiology , Optogenetics , Phenotype , Protein Kinases/genetics , Protein Kinases/metabolism , Signal Transduction , Sirtuins/genetics , Sirtuins/metabolism
5.
Front Behav Neurosci ; 9: 147, 2015.
Article in English | MEDLINE | ID: mdl-26082699

ABSTRACT

Near-infrared light stimulation of the brain has been claimed to improve deficits caused by traumatic brain injury and stroke. Here, we exploit the effect of transcranial near-infrared stimulation (tNIRS) as a tool to modulate cortical excitability in the healthy human brain. tNIRS was applied at a wavelength of 810 nm for 10 min over the hand area of the primary motor cortex (M1). Both single-pulse and paired-pulse measures of transcranial magnetic stimulation (TMS) were used to assess levels of cortical excitability in the corticospinal pathway and intracortical circuits. The serial reaction time task (SRTT) was used to investigate the possible effect of tNIRS on implicit learning. By evaluating the mean amplitude of single-pulse TMS elicited motor-evoked-potentials (MEPs) a significant decrease of the amplitude was observed up to 30 min post-stimulation, compared to baseline. Furthermore, the short interval cortical inhibition (SICI) was increased and facilitation (ICF) decreased significantly after tNIRS. The results from the SRTT experiment show that there was no net effect of stimulation on the performance of the participants. Results of a study questionnaire demonstrated that tNIRS did not induce serious side effects apart from light headache and fatigue. Nevertheless, 66% were able to detect the difference between active and sham stimulation conditions. In this study we provide further evidence that tNIRS is suitable as a tool for influencing cortical excitability and activity in the healthy human brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...