Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3259, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627419

ABSTRACT

The heterogeneity inherent in today's biotherapeutics, especially as a result of heavy glycosylation, can affect a molecule's safety and efficacy. Characterizing this heterogeneity is crucial for drug development and quality assessment, but existing methods are limited in their ability to analyze intact glycoproteins or other heterogeneous biotherapeutics. Here, we present an approach to the molecular assessment of biotherapeutics that uses proton-transfer charge-reduction with gas-phase fractionation to analyze intact heterogeneous and/or glycosylated proteins by mass spectrometry. The method provides a detailed landscape of the intact molecular weights present in biotherapeutic protein preparations in a single experiment. For glycoproteins in particular, the method may offer insights into glycan composition when coupled with a suitable bioinformatic strategy. We tested the approach on various biotherapeutic molecules, including Fc-fusion, VHH-fusion, and peptide-bound MHC class II complexes to demonstrate efficacy in measuring the proteoform-level diversity of biotherapeutics. Notably, we inferred the glycoform distribution for hundreds of molecular weights for the eight-times glycosylated fusion drug IL22-Fc, enabling correlations between glycoform sub-populations and the drug's pharmacological properties. Our method is broadly applicable and provides a powerful tool to assess the molecular heterogeneity of emerging biotherapeutics.


Subject(s)
Glycoproteins , Polysaccharides , Glycosylation , Glycoproteins/metabolism , Mass Spectrometry/methods , Polysaccharides/metabolism
2.
ACS Nano ; 18(15): 10464-10484, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38578701

ABSTRACT

Mammalian cells release a heterogeneous array of extracellular vesicles (EVs) that contribute to intercellular communication by means of the cargo that they carry. To resolve EV heterogeneity and determine if cargo is partitioned into select EV populations, we developed a method named "EV Fingerprinting" that discerns distinct vesicle populations using dimensional reduction of multiparametric data collected by quantitative single-EV flow cytometry. EV populations were found to be discernible by a combination of membrane order and EV size, both of which were obtained through multiparametric analysis of fluorescent features from the lipophilic dye Di-8-ANEPPS incorporated into the lipid bilayer. Molecular perturbation of EV secretion and biogenesis through respective ablation of the small GTPase Rab27a and overexpression of the EV-associated tetraspanin CD63 revealed distinct and selective alterations in EV populations, as well as cargo distribution. While Rab27a disproportionately affects all small EV populations with high membrane order, the overexpression of CD63 selectively increased the production of one small EV population of intermediate membrane order. Multiplexing experiments subsequently revealed that EV cargos have a distinct, nonrandom distribution with CD63 and CD81 selectively partitioning into smaller vs larger EVs, respectively. These studies not only present a method to probe EV biogenesis but also reveal how the selective partitioning of cargo contributes to EV heterogeneity.


Subject(s)
Extracellular Vesicles , Animals , Flow Cytometry , Lipid Bilayers , Cell Communication , Mammals
3.
J Med Chem ; 67(6): 4819-4832, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38470227

ABSTRACT

The inhibition of emopamil binding protein (EBP), a sterol isomerase within the cholesterol biosynthesis pathway, promotes oligodendrocyte formation, which has been proposed as a potential therapeutic approach for treating multiple sclerosis. Herein, we describe the discovery and optimization of brain-penetrant, orally bioavailable inhibitors of EBP. A structure-based drug design approach from literature compound 1 led to the discovery of a hydantoin-based scaffold, which provided balanced physicochemical properties and potency and an improved in vitro safety profile. The long half-lives of early hydantoin-based EBP inhibitors in rodents prompted an unconventional optimization strategy, focused on increasing metabolic turnover while maintaining potency and a brain-penetrant profile. The resulting EBP inhibitor 11 demonstrated strong in vivo target engagement in the brain, as illustrated by the accumulation of EBP substrate zymostenol after repeated dosing. Furthermore, compound 11 enhanced the formation of oligodendrocytes in human cortical organoids, providing additional support for our therapeutic hypothesis.


Subject(s)
Brain , Hydantoins , Humans , Oligodendroglia/metabolism , Drug Design , Hydantoins/metabolism
4.
MAbs ; 16(1): 2309685, 2024.
Article in English | MEDLINE | ID: mdl-38356181

ABSTRACT

Rabbits produce robust antibody responses and have unique features in their antibody repertoire that make them an attractive alternative to rodents for in vivo discovery. However, the frequent occurrence of a non-canonical disulfide bond between complementarity-determining region (CDR) H1 (C35a) and CDRH2 (C50) is often seen as a liability for therapeutic antibody development, despite limited reports of its effect on antibody binding, function, and stability. Here, we describe the discovery and humanization of a human-mouse cross-reactive anti-programmed cell death 1 (PD-1) monoclonal rabbit antibody, termed h1340.CC, which possesses this non-canonical disulfide bond. Initial removal of the non-canonical disulfide resulted in a loss of PD-1 affinity and cross-reactivity, which led us to explore protein engineering approaches to recover these. First, guided by the sequence of a related clone and the crystal structure of h1340.CC in complex with PD-1, we generated variant h1340.SA.LV with a potency and cross-reactivity similar to h1340.CC, but only partially recovered affinity. Side-by-side developability assessment of both h1340.CC and h1340.SA.LV indicate that they possess similar, favorable properties. Next, and prompted by recent developments in machine learning (ML)-guided protein engineering, we used an unbiased ML- and structure-guided approach to rapidly and efficiently generate a different variant with recovered affinity. Our case study thus indicates that, while the non-canonical inter-CDR disulfide bond found in rabbit antibodies does not necessarily constitute an obstacle to therapeutic antibody development, combining structure- and ML-guided approaches can provide a fast and efficient way to improve antibody properties and remove potential liabilities.


Subject(s)
Antibodies , Programmed Cell Death 1 Receptor , Rabbits , Animals , Mice , Humans , Complementarity Determining Regions/chemistry , Protein Engineering/methods
5.
J Crohns Colitis ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267224

ABSTRACT

BACKGROUND AND AIMS: The goal was to identify microbial drivers of IBD, by investigating mucosal-associated bacteria and their detrimental products in IBD patients. METHODS: We directly cultured bacterial communities from mucosal biopsies from pediatric gastrointestinal patients and examined for pathogenicity-associated traits. Upon identifying C. perfringens as toxigenic bacteria present in mucosal biopsies, we isolated strains and further characterized toxicity and prevalence. RESULTS: Mucosal biopsy microbial composition differed from corresponding stool samples. C. perfringens was present in 8 of 9 patients' mucosal biopsies, correlating with hemolytic activity, while not in all corresponding stool samples. Large IBD datasets showed higher C. perfringens prevalence in stool samples of IBD adults (18.7-27.1%) versus healthy (5.1%). In vitro, C. perfringens supernatants were toxic to cell types beneath the intestinal epithelial barrier, including endothelial, neuroblasts, and neutrophils, while impact on epithelial cells was less pronounced, suggesting C. perfringens may be damaging particularly when barrier integrity is compromised. Further characterization using purified toxins and genetic insertion mutants confirmed PFO toxin was sufficient for toxicity. Toxin RNA signatures were found in the original patient biopsies by PCR, suggesting intestinal production. C. perfringens supernatants also induced activation of neuroblast and dorsal root ganglion neurons in vitro, suggesting C. perfringens in inflamed mucosal tissue may directly contribute to abdominal pain, a frequent IBD symptom. CONCLUSIONS: Gastrointestinal carriage of certain toxigenic C. perfringens may have an important pathogenic impact on IBD patients. These findings support routine monitoring of C. perfringens and PFO toxins and potential treatment in patients.

6.
J Interferon Cytokine Res ; 44(1): 37-42, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37934469

ABSTRACT

Interleukin 18 (IL-18) is a key cytokine involved in the activation of T and NK cells, which are major effector cells in tumor killing. However, recombinant IL-18 showed limited efficacy in clinical trials. A recent study showed the lack of efficacy was largely due to the existence of IL-18BP, a soluble decoy receptor for IL-18. It was shown that engineered IL-18 variants that maintained pathway activation, but avoided IL-18BP binding, could exert potent antitumor effects. In this study, we demonstrated an alternative strategy to activate IL-18 signaling through direct receptor dimerization. These results provide evidences that the IL-18 pathway can be activated by directly bridging the receptors and, therefore, bypassing the IL-18BP-mediated inhibition.


Subject(s)
Interleukin-18 , Signal Transduction , Dimerization , Cytokines/metabolism , Protein Binding
7.
Nat Commun ; 14(1): 7940, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040762

ABSTRACT

The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein coupled receptor that has emerged as a promising therapeutic target in cancer. Targeting CCR8 with an antibody has appeared to be an attractive therapeutic approach, but the molecular basis for chemokine-mediated activation and antibody-mediated inhibition of CCR8 are not fully elucidated. Here, we obtain an antagonist antibody against human CCR8 and determine structures of CCR8 in complex with either the antibody or the endogenous agonist ligand CCL1. Our studies reveal characteristic antibody features allowing recognition of the CCR8 extracellular loops and CCL1-CCR8 interaction modes that are distinct from other chemokine receptor - ligand pairs. Informed by these structural insights, we demonstrate that CCL1 follows a two-step, two-site binding sequence to CCR8 and that antibody-mediated inhibition of CCL1 signaling can occur by preventing the second binding event. Together, our results provide a detailed structural and mechanistic framework of CCR8 activation and inhibition that expands our molecular understanding of chemokine - receptor interactions and offers insight into the development of therapeutic antibodies targeting chemokine GPCRs.


Subject(s)
Chemokines, CC , Receptors, Chemokine , Humans , Chemokines, CC/metabolism , Chemokines, CC/pharmacology , Receptors, CCR8/genetics , Ligands , Chemokine CCL1/metabolism , Receptors, Chemokine/genetics , Antibodies
8.
Cell ; 185(24): 4560-4573.e19, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36368322

ABSTRACT

Binding of arrestin to phosphorylated G protein-coupled receptors (GPCRs) is crucial for modulating signaling. Once internalized, some GPCRs remain complexed with ß-arrestins, while others interact only transiently; this difference affects GPCR signaling and recycling. Cell-based and in vitro biophysical assays reveal the role of membrane phosphoinositides (PIPs) in ß-arrestin recruitment and GPCR-ß-arrestin complex dynamics. We find that GPCRs broadly stratify into two groups, one that requires PIP binding for ß-arrestin recruitment and one that does not. Plasma membrane PIPs potentiate an active conformation of ß-arrestin and stabilize GPCR-ß-arrestin complexes by promoting a fully engaged state of the complex. As allosteric modulators of GPCR-ß-arrestin complex dynamics, membrane PIPs allow for additional conformational diversity beyond that imposed by GPCR phosphorylation alone. For GPCRs that require membrane PIP binding for ß-arrestin recruitment, this provides a mechanism for ß-arrestin release upon translocation of the GPCR to endosomes, allowing for its rapid recycling.


Subject(s)
Arrestins , Phosphatidylinositols , beta-Arrestins/metabolism , Phosphatidylinositols/metabolism , Arrestins/metabolism , beta-Arrestin 1/metabolism , Receptors, G-Protein-Coupled/metabolism
9.
Nat Commun ; 13(1): 6079, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36241643

ABSTRACT

NOX2 is the prototypical member of the NADPH oxidase NOX superfamily and produces superoxide (O2•-), a key reactive oxygen species (ROS) that is essential in innate and adaptive immunity. Mutations that lead to deficiency in NOX2 activity correlate with increased susceptibility to bacterial and fungal infections, resulting in chronic granulomatous disease. The core of NOX2 is formed by a heterodimeric transmembrane complex composed of NOX2 (formerly gp91) and p22, but a detailed description of its structural architecture is lacking. Here, we present the structure of the human NOX2 core complex bound to a selective anti-NOX2 antibody fragment. The core complex reveals an intricate extracellular topology of NOX2, a four-transmembrane fold of the p22 subunit, and an extensive transmembrane interface which provides insights into NOX2 assembly and activation. Functional assays uncover an inhibitory activity of the 7G5 antibody mediated by internalization-dependent and internalization-independent mechanisms. Overall, our results provide insights into the NOX2 core complex architecture, disease-causing mutations, and potential avenues for selective NOX2 pharmacological modulation.


Subject(s)
NADPH Oxidases , Superoxides , Humans , Immunoglobulin Fragments , NADPH Oxidase 2/genetics , NADPH Oxidase 2/metabolism , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism
10.
Proc Natl Acad Sci U S A ; 117(50): 31824-31831, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33257561

ABSTRACT

The ß2 adrenergic receptor (ß2AR) is an archetypal G protein coupled receptor (GPCR). One structural signature of GPCR activation is a large-scale movement (ca. 6 to 14 Å) of transmembrane helix 6 (TM6) to a conformation which binds and activates a cognate G protein. The ß2AR exhibits a low level of agonist-independent G protein activation. The structural origin of this basal activity and its suppression by inverse agonists is unknown but could involve a unique receptor conformation that promotes G protein activation. Alternatively, a conformational selection model proposes that a minor population of the canonical active receptor conformation exists in equilibrium with inactive forms, thus giving rise to basal activity of the ligand-free receptor. Previous spin-labeling and fluorescence resonance energy transfer experiments designed to monitor the positional distribution of TM6 did not detect the presence of the active conformation of ligand-free ß2AR. Here we employ spin-labeling and pressure-resolved double electron-electron resonance spectroscopy to reveal the presence of a minor population of unliganded receptor, with the signature outward TM6 displacement, in equilibrium with inactive conformations. Binding of inverse agonists suppresses this population. These results provide direct structural evidence in favor of a conformational selection model for basal activity in ß2AR and provide a mechanism for inverse agonism. In addition, they emphasize 1) the importance of minor populations in GPCR catalytic function; 2) the use of spin-labeling and variable-pressure electron paramagnetic resonance to reveal them in a membrane protein; and 3) the quantitative evaluation of their thermodynamic properties relative to the inactive forms, including free energy, partial molar volume, and compressibility.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Receptors, Adrenergic, beta-2/ultrastructure , Models, Molecular , Pressure , Protein Conformation, alpha-Helical , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Thermodynamics
11.
Cell ; 183(7): 1813-1825.e18, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33296703

ABSTRACT

Binding of arrestin to phosphorylated G-protein-coupled receptors (GPCRs) controls many aspects of cell signaling. The number and arrangement of phosphates may vary substantially for a given GPCR, and different phosphorylation patterns trigger different arrestin-mediated effects. Here, we determine how GPCR phosphorylation influences arrestin behavior by using atomic-level simulations and site-directed spectroscopy to reveal the effects of phosphorylation patterns on arrestin binding and conformation. We find that patterns favoring binding differ from those favoring activation-associated conformational change. Both binding and conformation depend more on arrangement of phosphates than on their total number, with phosphorylation at different positions sometimes exerting opposite effects. Phosphorylation patterns selectively favor a wide variety of arrestin conformations, differently affecting arrestin sites implicated in scaffolding distinct signaling proteins. We also reveal molecular mechanisms of these phenomena. Our work reveals the structural basis for the long-standing "barcode" hypothesis and has important implications for design of functionally selective GPCR-targeted drugs.


Subject(s)
Arrestin/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Arrestin/chemistry , Computer Simulation , HEK293 Cells , Humans , Phosphates/metabolism , Phosphopeptides/metabolism , Phosphorylation , Protein Binding , Protein Conformation , Spectrum Analysis
12.
Nat Struct Mol Biol ; 27(9): 829-835, 2020 09.
Article in English | MEDLINE | ID: mdl-32719456

ABSTRACT

Multidrug efflux pumps present a challenge to the treatment of bacterial infections, making it vitally important to understand their mechanism of action. Here, we investigate the nature of substrate binding within Lactococcus lactis LmrP, a prototypical multidrug transporter of the major facilitator superfamily. We determined the crystal structure of LmrP in a ligand-bound outward-open state and observed an embedded lipid in the binding cavity of LmrP, an observation supported by native mass spectrometry analyses. Molecular dynamics simulations suggest that the anionic lipid stabilizes the observed ligand-bound structure. Mutants engineered to disrupt binding of the embedded lipid display reduced transport of some, but not all, antibiotic substrates. Our results suggest that a lipid within the binding cavity could provide a malleable hydrophobic component that allows adaptation to the presence of different substrates, helping to explain the broad specificity of this protein and possibly other multidrug transporters.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Lactococcus lactis/metabolism , Membrane Transport Proteins/metabolism , Phosphatidylglycerols/metabolism , Bacterial Proteins/chemistry , Binding Sites , Biological Transport , Crystallography, X-Ray , Lactococcus lactis/chemistry , Ligands , Membrane Transport Proteins/chemistry , Molecular Dynamics Simulation , Phosphatidylglycerols/chemistry , Protein Conformation , Substrate Specificity
13.
Nature ; 579(7798): 303-308, 2020 03.
Article in English | MEDLINE | ID: mdl-31945771

ABSTRACT

Arrestin proteins bind to active, phosphorylated G-protein-coupled receptors (GPCRs), thereby preventing G-protein coupling, triggering receptor internalization and affecting various downstream signalling pathways1,2. Although there is a wealth of structural information detailing the interactions between GPCRs and G proteins, less is known about how arrestins engage GPCRs. Here we report a cryo-electron microscopy structure of full-length human neurotensin receptor 1 (NTSR1) in complex with truncated human ß-arrestin 1 (ßarr1(ΔCT)). We find that phosphorylation of NTSR1 is critical for the formation of a stable complex with ßarr1(ΔCT), and identify phosphorylated sites in both the third intracellular loop and the C terminus that may promote this interaction. In addition, we observe a phosphatidylinositol-4,5-bisphosphate molecule forming a bridge between the membrane side of NTSR1 transmembrane segments 1 and 4 and the C-lobe of arrestin. Compared with a structure of a rhodopsin-arrestin-1 complex, in our structure arrestin is rotated by approximately 85° relative to the receptor. These findings highlight both conserved aspects and plasticity among arrestin-receptor interactions.


Subject(s)
Models, Molecular , Receptors, Neurotensin/chemistry , beta-Arrestin 1/chemistry , Cryoelectron Microscopy , Humans , Phosphorylation , Protein Stability , Protein Structure, Quaternary , Receptors, Neurotensin/metabolism , beta-Arrestin 1/metabolism
14.
Nat Chem Biol ; 15(2): 205, 2019 02.
Article in English | MEDLINE | ID: mdl-30504785

ABSTRACT

In the version of this paper originally published, the structure for epinephrine shown in Figure 1a was redrawn with an extra carbon. The structure has been replaced in the HTML and PDF versions of the article. The original and corrected versions of the structure are shown below.

15.
Nat Chem Biol ; 14(11): 1059-1066, 2018 11.
Article in English | MEDLINE | ID: mdl-30327561

ABSTRACT

Salmeterol is a partial agonist for the ß2 adrenergic receptor (ß2AR) and the first long-acting ß2AR agonist to be widely used clinically for the treatment of asthma and chronic obstructive pulmonary disease. Salmeterol's safety and mechanism of action have both been controversial. To understand its unusual pharmacological action and partial agonism, we obtained the crystal structure of salmeterol-bound ß2AR in complex with an active-state-stabilizing nanobody. The structure reveals the location of the salmeterol exosite, where sequence differences between ß1AR and ß2AR explain the high receptor-subtype selectivity. A structural comparison with the ß2AR bound to the full agonist epinephrine reveals differences in the hydrogen-bond network involving residues Ser2045.43 and Asn2936.55. Mutagenesis and biophysical studies suggested that these interactions lead to a distinct active-state conformation that is responsible for the partial efficacy of G-protein activation and the limited ß-arrestin recruitment for salmeterol.


Subject(s)
Adrenergic beta-2 Receptor Agonists/chemistry , Receptors, Adrenergic, beta-2/chemistry , Salmeterol Xinafoate/chemistry , Animals , Antibodies/chemistry , Asthma/drug therapy , Binding Sites , Computer Simulation , Crystallography, X-Ray , GTP-Binding Proteins/chemistry , Humans , Hydrogen Bonding , Ligands , Lipids/chemistry , Mutagenesis , Protein Binding , Protein Conformation , Pulmonary Disease, Chronic Obstructive/drug therapy , Signal Transduction , beta-Arrestins/chemistry
16.
Nature ; 557(7705): 381-386, 2018 05.
Article in English | MEDLINE | ID: mdl-29720660

ABSTRACT

ß-arrestins are critical regulator and transducer proteins for G-protein-coupled receptors (GPCRs). ß-arrestin is widely believed to be activated by forming a stable and stoichiometric GPCR-ß-arrestin scaffold complex, which requires and is driven by the phosphorylated tail of the GPCR. Here we demonstrate a distinct and additional mechanism of ß-arrestin activation that does not require stable GPCR-ß-arrestin scaffolding or the GPCR tail. Instead, it occurs through transient engagement of the GPCR core, which destabilizes a conserved inter-domain charge network in ß-arrestin. This promotes capture of ß-arrestin at the plasma membrane and its accumulation in clathrin-coated endocytic structures (CCSs) after dissociation from the GPCR, requiring a series of interactions with membrane phosphoinositides and CCS-lattice proteins. ß-arrestin clustering in CCSs in the absence of the upstream activating GPCR is associated with a ß-arrestin-dependent component of the cellular ERK (extracellular signal-regulated kinase) response. These results delineate a discrete mechanism of cellular ß-arrestin function that is activated catalytically by GPCRs.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism , Animals , Biocatalysis , COS Cells , Cell Membrane/metabolism , Chlorocebus aethiops , HEK293 Cells , Humans , Phosphatidylinositols/metabolism , Protein Transport , Receptors, G-Protein-Coupled/chemistry , beta-Arrestins/chemistry
17.
Nat Struct Mol Biol ; 25(1): 4-12, 2018 01.
Article in English | MEDLINE | ID: mdl-29323277

ABSTRACT

G-protein-coupled receptors (GPCRs) relay numerous extracellular signals by triggering intracellular signaling through coupling with G proteins and arrestins. Recent breakthroughs in the structural determination of GPCRs and GPCR-transducer complexes represent important steps toward deciphering GPCR signal transduction at a molecular level. A full understanding of the molecular basis of GPCR-mediated signaling requires elucidation of the dynamics of receptors and their transducer complexes as well as their energy landscapes and conformational transition rates. Here, we summarize current insights into the structural plasticity of GPCR-G-protein and GPCR-arrestin complexes that underlies the regulation of the receptor's intracellular signaling profile.


Subject(s)
GTP-Binding Proteins/chemistry , Receptors, G-Protein-Coupled/chemistry , Signal Transduction , beta-Arrestins/chemistry , Allosteric Site , Animals , Electron Spin Resonance Spectroscopy , Humans , Ligands , Protein Binding , Protein Domains , Protein Structure, Secondary , Receptors, G-Protein-Coupled/physiology
18.
Nature ; 547(7661): 68-73, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28607487

ABSTRACT

G-protein-coupled receptor (GPCR)-mediated signal transduction is central to human physiology and disease intervention, yet the molecular mechanisms responsible for ligand-dependent signalling responses remain poorly understood. In class A GPCRs, receptor activation and G-protein coupling entail outward movements of transmembrane helix 6 (TM6). Here, using single-molecule fluorescence resonance energy transfer imaging, we examine TM6 movements in the ß2 adrenergic receptor (ß2AR) upon exposure to orthosteric ligands with different efficacies, in the absence and presence of the Gs heterotrimer. We show that partial and full agonists differentially affect TM6 motions to regulate the rate at which GDP-bound ß2AR-Gs complexes are formed and the efficiency of nucleotide exchange leading to Gs activation. These data also reveal transient nucleotide-bound ß2AR-Gs species that are distinct from known structures, and provide single-molecule perspectives on the allosteric link between ligand- and nucleotide-binding pockets that shed new light on the G-protein activation mechanism.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, Adrenergic, beta-2/metabolism , Single Molecule Imaging , Adrenergic beta-2 Receptor Agonists/chemistry , Adrenergic beta-2 Receptor Agonists/metabolism , Adrenergic beta-2 Receptor Agonists/pharmacology , Allosteric Site , Cell Membrane/metabolism , Clenbuterol/chemistry , Clenbuterol/metabolism , Clenbuterol/pharmacology , Enzyme Activation/drug effects , Epinephrine/chemistry , Epinephrine/metabolism , Epinephrine/pharmacology , Fluorescence Resonance Energy Transfer , GTP-Binding Protein alpha Subunits, Gs/chemistry , Guanosine Diphosphate/metabolism , Humans , Kinetics , Ligands , Models, Molecular , Movement/drug effects , Protein Stability , Receptors, Adrenergic, beta-2/chemistry
19.
Nat Struct Mol Biol ; 23(8): 744-51, 2016 08.
Article in English | MEDLINE | ID: mdl-27399258

ABSTRACT

Direct interactions with lipids have emerged as key determinants of the folding, structure and function of membrane proteins, but an understanding of how lipids modulate protein dynamics is still lacking. Here, we systematically explored the effects of lipids on the conformational dynamics of the proton-powered multidrug transporter LmrP from Lactococcus lactis, using the pattern of distances between spin-label pairs previously shown to report on alternating access of the protein. We uncovered, at the molecular level, how the lipid headgroups shape the conformational-energy landscape of the transporter. The model emerging from our data suggests a direct interaction between lipid headgroups and a conserved motif of charged residues that control the conformational equilibrium through an interplay of electrostatic interactions within the protein. Together, our data lay the foundation for a comprehensive model of secondary multidrug transport in lipid bilayers.


Subject(s)
Bacterial Proteins/chemistry , Lactococcus lactis , Membrane Lipids/chemistry , Membrane Transport Proteins/chemistry , Cardiolipins/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Protein Binding , Protein Conformation , Protein Stability
20.
Nature ; 535(7610): 182-6, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27362234

ABSTRACT

G-protein-coupled receptors (GPCRs) remain the primary conduit by which cells detect environmental stimuli and communicate with each other. Upon activation by extracellular agonists, these seven-transmembrane-domain-containing receptors interact with heterotrimeric G proteins to regulate downstream second messenger and/or protein kinase cascades. Crystallographic evidence from a prototypic GPCR, the ß2-adrenergic receptor (ß2AR), in complex with its cognate G protein, Gs, has provided a model for how agonist binding promotes conformational changes that propagate through the GPCR and into the nucleotide-binding pocket of the G protein α-subunit to catalyse GDP release, the key step required for GTP binding and activation of G proteins. The structure also offers hints about how G-protein binding may, in turn, allosterically influence ligand binding. Here we provide functional evidence that G-protein coupling to the ß2AR stabilizes a 'closed' receptor conformation characterized by restricted access to and egress from the hormone-binding site. Surprisingly, the effects of G protein on the hormone-binding site can be observed in the absence of a bound agonist, where G-protein coupling driven by basal receptor activity impedes the association of agonists, partial agonists, antagonists and inverse agonists. The ability of bound ligands to dissociate from the receptor is also hindered, providing a structural explanation for the G-protein-mediated enhancement of agonist affinity, which has been observed for many GPCR­G-protein pairs. Our data also indicate that, in contrast to agonist binding alone, coupling of a G protein in the absence of an agonist stabilizes large structural changes in a GPCR. The effects of nucleotide-free G protein on ligand-binding kinetics are shared by other members of the superfamily of GPCRs, suggesting that a common mechanism may underlie G-protein-mediated enhancement of agonist affinity.


Subject(s)
Allosteric Site , GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Adrenergic beta-2 Receptor Agonists/metabolism , Adrenergic beta-2 Receptor Antagonists/metabolism , Allosteric Regulation/drug effects , Allosteric Site/drug effects , GTP-Binding Protein alpha Subunits, Gs/pharmacology , Guanine/metabolism , Guanine/pharmacology , Humans , Kinetics , Ligands , Models, Molecular , Protein Binding/drug effects , Protein Conformation/drug effects , Receptors, Adrenergic, beta-2/immunology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...