Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 568: 76-82, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34192607

ABSTRACT

Medulloblastoma, the most common malignant brain tumor in children, consists of four molecular subgroups WNT, SHH, Group 3, and Group 4. Group 3 has the worst survival rate among the four subgroups and is characterized by the expression of retina-specific genes. CRX, the master regulator of the photoreceptor differentiation, is aberrantly expressed in Group 3 medulloblastomas. CRX expression increased the proliferation, anchorage-independent growth, invasion potential, and tumorigenicity of medulloblastoma cells indicating the oncogenic role of CRX in medulloblastoma pathogenesis. CRX knockdown resulted in the downregulation of expression of several retina-specific genes like IMPG2, PDC, RCVRN. and Group 3 specific genes like GABRA5, MYC, PROM1. Thus, CRX plays a major role not only in the expression of retina-specific genes but also in defining Group 3 identity. Increased expression of several pro-apoptotic genes upon CRX knockdown suggests that CRX could protect Group 3 medulloblastoma cells from cell death. Several negative regulators of the TGF-ß signaling pathway like SMAD7, PMEPA1, KLF2 were upregulated upon the CRX knockdown. Western blot analysis showed a decrease in the levels of (Phospho)-SMAD2, total levels of SMAD2, SMAD4, and an increase in the levels of SMAD7 indicating inhibition of the TGF-ß signaling pathway upon CRX knockdown. Copy number variations in several genes involved in the TGF-ß signaling pathway occur in a subset of Group 3 tumors. Autocrine TGF-ß/activin signaling has recently been reported to be active in a subset of Group 3 medulloblastomas. CRX knockdown resulting in the inhibition of the TGF-ß/activin signaling pathway demonstrates an interaction between the two Group 3 specific oncogenic pathways and suggests simultaneous targeting of both CRX and TGF-ß signaling as a possible therapeutic strategy.


Subject(s)
Activins/metabolism , Cerebellar Neoplasms/genetics , Homeodomain Proteins/genetics , Medulloblastoma/genetics , Signal Transduction , Trans-Activators/genetics , Transforming Growth Factor beta/metabolism , Animals , Cell Line, Tumor , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Medulloblastoma/metabolism , Mice, Inbred NOD , Mice, SCID
2.
Acta Neuropathol Commun ; 7(1): 52, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30944042

ABSTRACT

Genome-wide expression profiling studies have identified four core molecular subgroups of medulloblastoma: WNT, SHH, Group 3 and Group 4. Molecular markers are necessary for accurate risk stratification in the non-WNT subgroups due to the underlying heterogeneity in genetic alterations and overall survival. MiR-204 expression was evaluated in molecularly classified 260 medulloblastomas from an Indian cohort and in 763 medulloblastomas from the MAGIC cohort, SickKids, Canada. Low expression of miR-204 in the Group 3 / Group 4 tumors identify a highly aggressive subset of tumors having poor overall survival, in the two independent cohorts of medulloblastomas. Downregulation of miR-204 expression correlates with poor survival within the Group 4 as well indicating it as a valuable risk-stratification marker in the subgroup. Restoration of miR-204 expression in multiple medulloblastoma cell lines was found to inhibit their anchorage-independent growth, invasion potential and tumorigenicity. IGF2R was identified as a novel target of miR-204. MiR-204 expression resulted in downregulation of both M6PR and IGF2R that transport lysosomal proteases from the Golgi apparatus to the lysosomes. Consistent with this finding, miR-204 expression resulted in reduction in the levels of the lysosomal proteases in medulloblastoma cells. MiR-204 expression also resulted in inhibition of autophagy that is known to be dependent on the lysosomal degradation pathway and LC3B, a known miR-204 target. Treatment with HDAC inhibitors resulted in upregulation of miR-204 expression in medulloblastoma cells, suggesting therapeutic role for these inhibitors in the treatment of medulloblastomas. In summary, miR-204 is not only a valuable risk stratification marker in the combined cohort of Group 3 / Group 4 medulloblastomas as well as in the Group 4 itself, that has paucity of good prognostication markers, but also has therapeutic potential as indicated by its tumor suppressive effect on medulloblastoma cells.


Subject(s)
Cerebellar Neoplasms/metabolism , Down-Regulation/physiology , Gene Expression Regulation, Neoplastic , Medulloblastoma/metabolism , MicroRNAs/biosynthesis , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/mortality , Cohort Studies , HEK293 Cells , Humans , Medulloblastoma/genetics , Medulloblastoma/mortality , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , Neoplasm Grading/methods , Survival Rate/trends , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...