Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 215: 108908, 2022 02.
Article in English | MEDLINE | ID: mdl-34954204

ABSTRACT

Opticin is an extracellular glycoprotein present in the vitreous. Its antiangiogenic properties offer the potential for therapeutic intervention in conditions such as proliferative diabetic retinopathy and retinopathy of prematurity. Here, we investigated the hypothesis that intravitreal administration of recombinant human opticin can safely protect against the development of pathological angiogenesis and promote its regression. We generated and purified recombinant human opticin and investigated its impact on the development and regression of pathological retinal neovascularization following intravitreal administration in murine oxygen-induced retinopathy. We also investigated its effect on normal retinal vascular development and function, following intravitreal injection in neonatal mice, by histological examination and electroretinography. In oxygen-induced retinopathy, intravitreal administration of human recombinant opticin protected against the development of retinal neovascularization to similar extent as aflibercept, which targets VEGF. Opticin also accelerated regression of established retinal neovascularization, though the effect at 18 h was less than that of aflibercept. Intravitreal administration of human recombinant opticin in neonatal mice caused no detectable perturbation of subsequent retinal vascular development or function. In summary we found that intraocular administration of recombinant human opticin protects against the development of pathological angiogenesis in mice and promotes its regression.


Subject(s)
Hyperoxia , Retinal Neovascularization , Retinopathy of Prematurity , Animals , Disease Models, Animal , Humans , Hyperoxia/complications , Infant, Newborn , Intravitreal Injections , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic , Oxygen/toxicity , Retinal Neovascularization/drug therapy , Retinopathy of Prematurity/drug therapy , Retinopathy of Prematurity/prevention & control
2.
Cell Rep ; 36(5): 109461, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34348137

ABSTRACT

In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination.


Subject(s)
Cell Nucleus/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Actomyosin/metabolism , Animals , Dyneins/metabolism , Kinetics , Mice, Transgenic , Microtubules/metabolism , Myosin Type II/metabolism , Neurogenesis , Polymerization , Protein Transport , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Synapses/metabolism
3.
Hum Gene Ther ; 31(13-14): 709-718, 2020 07.
Article in English | MEDLINE | ID: mdl-32578444

ABSTRACT

The neuronal ceroid lipofuscinoses (NCLs), often referred to as Batten disease, are inherited lysosomal storage disorders that represent the most common neurodegeneration during childhood. Symptoms include seizures, vision loss, motor and cognitive decline, and premature death. The development of brain-directed treatments for NCLs has made noteworthy progress in recent years. Clinical trials are currently ongoing or planned for different forms of the disease. Despite these promising advances, it is unlikely that therapeutic interventions targeting the brain will prevent loss of vision in patients as retinal cells remain untreated and will continue to degenerate. Here, we demonstrate that Cln3Δex7/8 mice, a mouse model of CLN3 Batten disease with juvenile onset, suffer from a decline in inner retinal function resulting from the death of rod bipolar cells, interneurons vital for signal transmission from photoreceptors to ganglion cells in the retina. We also show that this ocular phenotype can be treated by adeno-associated virus (AAV)-mediated expression of CLN3 in cells of the inner retina, leading to significant survival of bipolar cells and preserved retinal function. In contrast, the treatment of photoreceptors, which are lost in patients at late disease stages, was not therapeutic in Cln3Δex7/8 mice, underlining the notion that CLN3 disease is primarily a disease of the inner retina with secondary changes in the outer retina. These data indicate that bipolar cells play a central role in this disease and identify this cell type as an important target for ocular AAV-based gene therapies for CLN3 disease.


Subject(s)
Dependovirus/genetics , Disease Models, Animal , Genetic Therapy/methods , Membrane Glycoproteins/genetics , Molecular Chaperones/genetics , Neuronal Ceroid-Lipofuscinoses/complications , Photoreceptor Cells/metabolism , Retinal Diseases/therapy , Animals , Mice , Mice, Inbred C57BL , Phenotype , Retinal Diseases/etiology , Retinal Diseases/metabolism , Retinal Diseases/pathology
4.
Hum Mol Genet ; 29(8): 1310-1318, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32196553

ABSTRACT

Rhodopsin misfolding caused by the P23H mutation is a major cause of autosomal dominant retinitis pigmentosa (adRP). To date, there are no effective treatments for adRP. The BiP co-chaperone and reductase ERdj5 (DNAJC10) is part of the endoplasmic reticulum (ER) quality control machinery, and previous studies have shown that overexpression of ERdj5 in vitro enhanced the degradation of P23H rhodopsin, whereas knockdown of ERdj5 increased P23H rhodopsin ER retention and aggregation. Here, we investigated the role of ERdj5 in photoreceptor homeostasis in vivo by using an Erdj5 knockout mouse crossed with the P23H knock-in mouse and by adeno-associated viral (AAV) vector-mediated gene augmentation of ERdj5 in P23H-3 rats. Electroretinogram (ERG) and optical coherence tomography of Erdj5-/- and P23H+/-:Erdj5-/- mice showed no effect of ERdj5 ablation on retinal function or photoreceptor survival. Rhodopsin levels and localization were similar to those of control animals at a range of time points. By contrast, when AAV2/8-ERdj5-HA was subretinally injected into P23H-3 rats, analysis of the full-field ERG suggested that overexpression of ERdj5 reduced visual function loss 10 weeks post-injection (PI). This correlated with a significant preservation of photoreceptor cells at 4 and 10 weeks PI. Assessment of the outer nuclear layer (ONL) morphology showed preserved ONL thickness and reduced rhodopsin retention in the ONL in the injected superior retina. Overall, these data suggest that manipulation of the ER quality control and ER-associated degradation factors to promote mutant protein degradation could be beneficial for the treatment of adRP caused by mutant rhodopsin.


Subject(s)
HSP40 Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Retinitis Pigmentosa/genetics , Rhodopsin/genetics , Animals , Disease Models, Animal , Electroretinography , Endoplasmic Reticulum/genetics , Gene Knock-In Techniques , Mice , Mice, Knockout , Mutation/genetics , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Rats , Retina/metabolism , Retina/pathology , Retinitis Pigmentosa/pathology , Rhodopsin/metabolism , Transfection
5.
Mol Ther ; 28(3): 820-829, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31981492

ABSTRACT

Glaucoma is a common cause of blindness, yet current therapeutic options are imperfect. Clinical trials have invariably shown that reduction in intraocular pressure (IOP) regardless of disease subtype prevents visual loss. Reducing ciliary body aqueous humor production can lower IOP, and the adeno-associated virus ShH10 serotype was identified as able to transduce mouse ciliary body epithelium following intravitreal injection. Using ShH10 to deliver a single vector CRISPR-Cas9 system disrupting Aquaporin 1 resulted in reduced IOP in treated eyes (10.4 ± 2.4 mmHg) compared with control (13.2 ± 2.0 mmHg) or non-injected eyes (13.1 ± 2.8 mmHg; p < 0.001; n = 12). Editing in the aquaporin 1 gene could be detected in ciliary body, and no off-target increases in corneal or retinal thickness were identified. In experimental mouse models of corticosteroid and microbead-induced ocular hypertension, IOP could be reduced to prevent ganglion cell loss (32 ± 4 /mm2) compared with untreated eyes (25 ± 5/mm2; p < 0.01). ShH10 could transduce human ciliary body from post-mortem donor eyes in ex vivo culture with indel formation detectable in the Aquaporin 1 locus. Clinical translation of this approach to patients with glaucoma may permit long-term reduction of IOP following a single injection.


Subject(s)
Aquaporin 1/genetics , Ciliary Body/metabolism , Gene Editing , Genetic Therapy , Glaucoma/genetics , Glaucoma/therapy , Animals , Aquaporin 1/metabolism , Base Sequence , CRISPR-Cas Systems , Dependovirus/genetics , Gene Expression , Gene Targeting , Genetic Therapy/methods , Genetic Vectors/genetics , Glaucoma/diagnosis , Glaucoma/physiopathology , Mice , Retina/metabolism , Retina/pathology , Transduction, Genetic , Transgenes
6.
Hum Mol Genet ; 28(23): 3867-3879, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31807779

ABSTRACT

The neuronal ceroid lipofuscinoses (NCLs), more commonly referred to as Batten disease, are a group of inherited lysosomal storage disorders that present with neurodegeneration, loss of vision and premature death. There are at least 13 genetically distinct forms of NCL. Enzyme replacement therapies and pre-clinical studies on gene supplementation have shown promising results for NCLs caused by lysosomal enzyme deficiencies. The development of gene therapies targeting the brain for NCLs caused by defects in transmembrane proteins has been more challenging and only limited therapeutic effects in animal models have been achieved so far. Here, we describe the development of an adeno-associated virus (AAV)-mediated gene therapy to treat the neurodegeneration in a mouse model of CLN6 disease, a form of NCL with a deficiency in the membrane-bound protein CLN6. We show that neonatal bilateral intracerebroventricular injections with AAV9 carrying CLN6 increase lifespan by more than 90%, maintain motor skills and motor coordination and reduce neuropathological hallmarks of Cln6-deficient mice up to 23 months post vector administration. These data demonstrate that brain-directed gene therapy is a valid strategy to treat the neurodegeneration of CLN6 disease and may be applied to other forms of NCL caused by transmembrane protein deficiencies in the future.


Subject(s)
Genetic Vectors/administration & dosage , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/therapy , Animals , Animals, Newborn , Brain/growth & development , Dependovirus/genetics , Disease Models, Animal , Genetic Therapy , Humans , Injections, Intraventricular , Membrane Proteins/metabolism , Mice , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Treatment Outcome
7.
Mol Ther ; 26(5): 1343-1353, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29606505

ABSTRACT

The neuronal ceroid lipofuscinoses (NCLs) are inherited lysosomal storage disorders characterized by general neurodegeneration and premature death. Sight loss is also a major symptom in NCLs, severely affecting the quality of life of patients, but it is not targeted effectively by brain-directed therapies. Here we set out to explore the therapeutic potential of an ocular gene therapy to treat sight loss in NCL due to a deficiency in the transmembrane protein CLN6. We found that, although Cln6nclf mice presented mainly with photoreceptor degeneration, supplementation of CLN6 in photoreceptors was not beneficial. Because the level of CLN6 is low in photoreceptors but high in bipolar cells (retinal interneurons that are only lost in Cln6-deficient mice at late disease stages), we explored the therapeutic effects of delivering CLN6 to bipolar cells using adeno-associated virus (AAV) serotype 7m8. Bipolar cell-specific expression of CLN6 slowed significantly the loss of photoreceptor function and photoreceptor cells. This study shows that the deficiency of a gene normally expressed in bipolar cells can cause the loss of photoreceptors and that this can be prevented by bipolar cell-directed treatment.


Subject(s)
Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Photoreceptor Cells/metabolism , Retinal Bipolar Cells/metabolism , Animals , Dependovirus/genetics , Disease Models, Animal , Gene Expression , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/genetics , Humans , Immunohistochemistry , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Neuronal Ceroid-Lipofuscinoses/metabolism , Neuronal Ceroid-Lipofuscinoses/pathology , Neuronal Ceroid-Lipofuscinoses/therapy , Photoreceptor Cells/pathology
8.
Development ; 145(8)2018 04 25.
Article in English | MEDLINE | ID: mdl-29615467

ABSTRACT

In the adult central nervous system, endothelial and neuronal cells engage in tight cross-talk as key components of the so-called neurovascular unit. Impairment of this important relationship adversely affects tissue homeostasis, as observed in neurodegenerative conditions including Alzheimer's and Parkinson's disease. In development, the influence of neuroprogenitor cells on angiogenesis is poorly understood. Here, we show in mouse that these cells interact intimately with the growing retinal vascular network, and we identify a novel regulatory mechanism of vasculature development mediated by hypoxia-inducible factor 2a (Hif2a). By Cre-lox gene excision, we show that Hif2a in retinal neuroprogenitor cells upregulates the expression of the pro-angiogenic mediators vascular endothelial growth factor and erythropoietin, whereas it locally downregulates the angiogenesis inhibitor endostatin. Importantly, absence of Hif2a in retinal neuroprogenitor cells causes a marked reduction of proliferating endothelial cells at the angiogenic front. This results in delayed retinal vascular development, fewer major retinal vessels and reduced density of the peripheral deep retinal vascular plexus. Our findings demonstrate that retinal neuroprogenitor cells are a crucial component of the developing neurovascular unit.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Retinal Vessels/growth & development , Retinal Vessels/innervation , Animals , Astrocytes/cytology , Astrocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Proliferation , Endostatins/metabolism , Gene Expression Regulation, Developmental , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neovascularization, Physiologic/genetics , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Retinal Pigment Epithelium/growth & development , Retinal Pigment Epithelium/metabolism , Retinal Vessels/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
Stem Cell Reports ; 8(6): 1659-1674, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28552606

ABSTRACT

The loss of cone photoreceptors that mediate daylight vision represents a leading cause of blindness, for which cell replacement by transplantation offers a promising treatment strategy. Here, we characterize cone differentiation in retinas derived from mouse embryonic stem cells (mESCs). Similar to in vivo development, a temporal pattern of progenitor marker expression is followed by the differentiation of early thyroid hormone receptor ß2-positive precursors and, subsequently, photoreceptors exhibiting cone-specific phototransduction-related proteins. We establish that stage-specific inhibition of the Notch pathway increases cone cell differentiation, while retinoic acid signaling regulates cone maturation, comparable with their actions in vivo. MESC-derived cones can be isolated in large numbers and transplanted into adult mouse eyes, showing capacity to survive and mature in the subretinal space of Aipl1-/- mice, a model of end-stage retinal degeneration. Together, this work identifies a robust, renewable cell source for cone replacement by purified cell suspension transplantation.


Subject(s)
Mouse Embryonic Stem Cells/transplantation , Retinal Cone Photoreceptor Cells/cytology , Retinal Degeneration/therapy , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/drug effects , Disease Models, Animal , Eye Proteins/antagonists & inhibitors , Eye Proteins/genetics , Eye Proteins/metabolism , Hepatocyte Nuclear Factor 6/metabolism , Leukemia Inhibitory Factor/pharmacology , Mice , Mice, Knockout , Mouse Embryonic Stem Cells/cytology , Oligodendrocyte Transcription Factor 2/metabolism , Opsins/metabolism , Orphan Nuclear Receptors/antagonists & inhibitors , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Otx Transcription Factors/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Notch/antagonists & inhibitors , Receptors, Notch/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/pathology , Signal Transduction , Tretinoin/metabolism , Tretinoin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...