Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 13653, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34211047

ABSTRACT

The hyperbolic materials are strongly anisotropic media with a permittivity/permeability tensor having diagonal components of different sign. They combine the properties of dielectric and metal-like media and are described with hyperbolic isofrequency surfaces in wave-vector space. Such media may support unusual effects like negative refraction, near-field radiation enhancement and nanoscale light confinement. They were demonstrated mainly for microwave and infrared frequency ranges on the basis of metamaterials and natural anisotropic materials correspondingly. For the terahertz region, the tunable hyperbolic media were demonstrated only theoretically. This paper is dedicated to the first experimental demonstration of an optically tunable terahertz hyperbolic medium in 0.2-1.0 THz frequency range. The negative phase shift of a THz wave transmitted through the structure consisting of 40 nm (in relation to THz wave transmitted through substrate) to 120 nm bismuth film (in relation to both THz waves transmitted through substrate and air) on 21 µm mica substrate is shown. The optical switching of topological transition between elliptic and hyperbolic isofrequency contours is demonstrated for the effective structure consisting of 40 nm Bi on mica. For the case of 120 nm Bi on mica, the effective permittivity is only hyperbolic in the studied range. It is shown that the in-plane component of the effective permittivity tensor may be positive or negative depending on the frequency of THz radiation and continuous-wave optical pumping power (with a wavelength of 980 nm), while the orthogonal one is always positive. The proposed optically tunable structure may be useful for application in various fields of the modern terahertz photonics.

2.
Sci Rep ; 10(1): 3157, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32081873

ABSTRACT

Active manipulation of the polarization states at terahertz frequencies is crucially helpful for polarization-sensitive spectroscopy, having significant applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. The weakness of polarization manipulation provided by natural materials can be overcomed by chiral metamaterials. Chiral metamaterials have a huge potential to achieve the necessary polarization effects, hence they provide the basis for applications such as ultracompact polarization components. Terahertz chiral metamaterials that allow dynamic polarization modulation of terahertz waves are of great practical interest and still challenging. Here, we show that terahertz metasurface based on the four conjugated "petal" resonators integrated with multi-layered graphene (MLG) can enable dynamically tunable chiroptical response using optical pumping. In particular, a change of ellipticity angle of 20° is observed around 0.76 THz under optical pumping by a 980 nm continuous wave (CW) laser. Furthermore, using temporal coupled-mode theory, our study also reveals that the chiroptical response of the proposed multi-layered graphene-based metasurface is strongly dependent on the influence of optical pumping on the loss parameters of resonance modes, leading to actively controllable polarization states of the transmitted terahertz waves. The present work paves the way for the realization of fundamental terahertz components capable for active polarization manipulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...