Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Parkinsonism Relat Disord ; 125: 107048, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959686

ABSTRACT

INTRODUCTION: Huntington's disease (HD) is a hereditary condition caused by the expansion of the CAG trinucleotide in the huntingtin gene on chromosome 4, resulting in motor, cognitive, and psychiatric disorders that significantly impact patients' quality of life. Despite the lack of effective treatments for the disease, various surgical strategies have been explored to alleviate symptoms and slow its progression. METHODOLOGY: A comprehensive systematic literature review was conducted, including MeSH terms, yielding only 38 articles that were categorized based on the surgical procedure. The study aimed to describe the types of surgeries performed and their efficacy in HD patients. RESULTS: Deep brain stimulation (DBS) involved 41 predominantly male patients with bilateral implantation in the globus pallidus, showing a preoperative Unified Huntington's Disease Rating Scale (UHDRS) score of 60.25 ± 16.13 and a marked postoperative value of 48.54 ± 13.93 with a p < 0.018 at one year and p < 0.040 at three years. Patients experienced improvement in hyperkinesia but worsening of bradykinesia. Additionally, cell transplantation in 119 patients resulted in a lower preoperative UHDRS score of 34.61 ± 14.61 and a significant postoperative difference of 32.93 ± 15.87 (p < 0.016), respectively, in the first to third years of following. Some now, less used procedures were crucial for understanding brain function, such as pallidotomies in 3 patients, showing only a 25 % difference from their baseline. CONCLUSION: Despite advancements in technology, there is still no curative treatment, only palliative options. Promising treatments like trophic factor implantation offer new prospects for the future.

2.
Vet Res ; 55(1): 88, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010235

ABSTRACT

Each year, due to climate change, an increasing number of new pathogens are being discovered and studied, leading to an increase in the number of known diseases affecting various fish species in different regions of the world. Viruses from the family Iridoviridae, which consist of the genera Megalocytivirus, Lymphocystivirus, and Ranavirus, cause epizootic outbreaks in farmed and wild, marine, and freshwater fish species (including ornamental fish). Diseases caused by fish viruses of the family Iridoviridae have a significant economic impact, especially in the aquaculture sector. Consequently, vaccines have been developed in recent decades, and their administration methods have improved. To date, various types of vaccines are available to control and prevent Iridoviridae infections in fish populations. Notably, two vaccines, specifically targeting Red Sea bream iridoviral disease and iridoviruses (formalin-killed vaccine and AQUAVAC® IridoV, respectively), are commercially available. In addition to exploring these themes, this review examines the immune responses in fish following viral infections or vaccination procedures. In general, the evasion mechanisms observed in iridovirus infections are characterised by a systemic absence of inflammatory responses and a reduction in the expression of genes associated with the adaptive immune response. Finally, this review also explores prophylactic procedure trends in fish vaccination strategies, focusing on future advances in the field.


Subject(s)
DNA Virus Infections , Fish Diseases , Fishes , Iridoviridae , Vaccination , Viral Vaccines , Animals , Fish Diseases/virology , Fish Diseases/prevention & control , Fish Diseases/immunology , DNA Virus Infections/veterinary , DNA Virus Infections/immunology , DNA Virus Infections/virology , DNA Virus Infections/prevention & control , Iridoviridae/physiology , Viral Vaccines/immunology , Fishes/virology , Fishes/immunology , Vaccination/veterinary
3.
Pathogens ; 13(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921776

ABSTRACT

Gilthead sea bream and European sea bass display different resistance-susceptibility patterns during infection with different nervous necrosis virus (NNV) species, which may derive from differences in the triggered immune response. Based on this premise, we analysed the transcription of several selected immune-related genes in sea bream experimentally infected with NNV isolates obtained from sea bass (DlNNV, RGNNV) or sea bream (SaNNV, RGNNV/SJNNV). Viral replication only occurred in SaNNV-inoculated fish; therefore, the differences between the immune response elicited by both viruses may be the key to understanding the mechanism behind the inhibition of DlNNV replication. Principal component analysis clustered samples according to the viral isolate from 1 day post infection onwards and evidenced differences in the immune response against both viruses, even though no mortalities or symptoms were recorded. The response against DlNNV is characterized by higher rtp3 transcription early after the infection, longer-lasting il-10 transcription and stronger induction of casp1 and hsp70. These genes should be targets for future studies in order to elucidate their role in hampering NNV replication in sea bream, which is essential for developing effective prophylactic measures.

4.
Fish Shellfish Immunol ; 151: 109646, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810712

ABSTRACT

To achieve insights in antiviral immune defense of the central nervous system (CNS), we investigated T cells and CD45 cells in the marine fish model Dicentrarchus labrax infected with the CNS-tropic virus betanodavirus. By employing markers for pan-T cells (mAb DLT15) and CD45-cells (mAb DLT22) in immunofluorescence (IIF) of leukocytes from brain, we obtained 3,7 ± 2.3 % of T cells and 7.3 ± 3.2 % of CD45+ cells. Both IIF and immunoelectron microscopy confirmed a leukocyte/glial morphology for the immunoreactive cells. Quantitative immunohistochemistry (qIHC) of brain/eye sections showed 1.9 ± 0.8 % of T+ cells and 2 ± 0.9 % of CD45+ cells in the brain, and 3.6 ± 1.9 % and 4.1 ± 2.2 % in the eye, respectively. After in vivo RGNNV infection the number of T cells/CD45+ leukocytes in the brain increased to 8.3 ± 2.1 % and 11.6 ± 4.4 % (by IIF), and 26.1 ± 3.4 % and 45.6 ± 5.9 % (by qIHC), respectively. In the eye we counted after infection 8.5 ± 4.4 % of T cells and 10.2 ± 5.8 % of CD45 cells. Gene transcription analysis of brain mRNA revealed a strong increase of gene transcripts coding for: antiviral proteins Mx and ISG-12; T-cell related CD3ε/δ, TcRß, CD4, CD8α, CD45; and for immuno-modulatory cytokines TNFα, IL-2, IL-10. A RAG-1 gene product was also present and upregulated, suggesting somatic recombination in the fish brain. Similar transcription data were obtained in the eye, albeit with differences. Our findings provide first evidence for a recruitment and involvement of T cells and CD45+ leukocytes in the fish eye-brain axis during antiviral responses and suggest similarities in the CNS immune defense across evolutionary distant vertebrates.

5.
Mol Immunol ; 163: 243-248, 2023 11.
Article in English | MEDLINE | ID: mdl-37879238

ABSTRACT

Fish RTP3, belonging to the receptor-transporting protein family, display several functions, including a putative antiviral role as virus-responsive gene. In this work, we have identified and characterized two different European sea bass rtp3 genes. In addition, an in vivo transcription analysis in response to LPS, poly I:C and betanodavirus infection (RGNNV genotype) has been performed. The sequence analysis showed that European sea bass displays two rtp3 genes, X1 and X2, composed of two exons and a single intron (1007-bp and 888-bp long, respectively), located within the ORF sequence. The full-length cDNA is 1969 bp for rtp3 X1, and 1491 bp for rtp3 X2. Several ATTTA motifs have been found in the intron sequence of both genes, whereas rtp3 X1 also contains this motif in both untranslated regions. The transcription analyses revealed significant level of rtp3 X2 mRNA in brain and head kidney after LPS and poly I:C inoculation; however, the induction elicited by RGNNV infection was much higher, suggesting an essential role for this protein in controlling NNV infections.


Subject(s)
Bass , Fish Diseases , Nodaviridae , RNA Virus Infections , Animals , Bass/genetics , Lipopolysaccharides , Genomics , Genotype , Poly I-C/pharmacology , Fish Diseases/genetics , Nodaviridae/genetics
6.
Genetics ; 225(3)2023 11 01.
Article in English | MEDLINE | ID: mdl-37758508

ABSTRACT

Standardized nomenclature for genes, gene products, and isoforms is crucial to prevent ambiguity and enable clear communication of scientific data, facilitating efficient biocuration and data sharing. Standardized genotype nomenclature, which describes alleles present in a specific strain that differ from those in the wild-type reference strain, is equally essential to maximize research impact and ensure that results linking genotypes to phenotypes are Findable, Accessible, Interoperable, and Reusable (FAIR). In this publication, we extend the fission yeast clade gene nomenclature guidelines to support the curation efforts at PomBase (www.pombase.org), the Schizosaccharomyces pombe Model Organism Database. This update introduces nomenclature guidelines for noncoding RNA genes, following those set forth by the Human Genome Organisation Gene Nomenclature Committee. Additionally, we provide a significant update to the allele and genotype nomenclature guidelines originally published in 1987, to standardize the diverse range of genetic modifications enabled by the fission yeast genetic toolbox. These updated guidelines reflect a community consensus between numerous fission yeast researchers. Adoption of these rules will improve consistency in gene and genotype nomenclature, and facilitate machine-readability and automated entity recognition of fission yeast genes and alleles in publications or datasets. In conclusion, our updated guidelines provide a valuable resource for the fission yeast research community, promoting consistency, clarity, and FAIRness in genetic data sharing and interpretation.


Subject(s)
Schizosaccharomyces , Humans , Schizosaccharomyces/genetics , Alleles , Comprehension , Databases, Genetic , Phenotype
7.
Front Immunol ; 14: 1209926, 2023.
Article in English | MEDLINE | ID: mdl-37346045

ABSTRACT

Lymphocystis disease is one of the main viral pathologies affecting cultured gilthead seabream (Sparus aurata) in the Mediterranean region. Recently, we have developed a DNA vaccine based on the major capsid protein (MCP) of the Lymphocystis disease virus 3 (LCDV-Sa). The immune response triggered by either LCDV-Sa infection or vaccination have been previously studied and seem to be highly related to the modulation of the inflammatory and the IFN response. However, a comprehensive evaluation of immune-related gene expression in vaccinated fish after viral infection to identify immunogenes involved in vaccine-induced protection have not been carried out to date. The present study aimed to fulfill this objective by analyzing samples of head-kidney, spleen, intestine, and caudal fin from fish using an OpenArray® platform containing targets related to the immune response of gilthead seabream. The results obtained showed an increase of deregulated genes in the hematopoietic organs between vaccinated and non-vaccinated fish. However, in the intestine and fin, the results showed the opposite trend. The global effect of fish vaccination was a significant decrease (p<0.05) of viral replication in groups of fish previously vaccinated, and the expression of the following immune genes related to viral recognition (tlr9), humoral and cellular response (rag1 and cd48), inflammation (csf1r, elam, il1ß, and il6), antiviral response (isg15, mx1, mx2, mx3), cell-mediated cytotoxicity (nccrp1), and apoptosis (prf1). The exclusive modulation of the immune response provoked by the vaccination seems to control the progression of the infection in the experimentally challenged gilthead seabream.


Subject(s)
DNA Virus Infections , Iridoviridae , Sea Bream , Animals , Iridoviridae/physiology , DNA , Immunity
8.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37375773

ABSTRACT

Chagas disease (ChD), caused by Trypanosoma cruzi, is the most serious parasitosis in the western hemisphere. Benznidazole and nifurtimox, the only two trypanocidal drugs, are expensive, difficult to obtain, and have severe side effects. Nitazoxanide has shown to be effective against protozoa, bacteria, and viruses. This study aimed to evaluate the nitazoxanide efficacy against the Mexican T. cruzi Ninoa strain in mice. Infected animals were orally treated for 30 days with nitazoxanide (100 mg/kg) or benznidazole (10 mg/kg). The clinical, immunological, and histopathological conditions of the mice were evaluated. Nitazoxanide- or benznidazole-treated mice had longer survival and less parasitemia than those without treatment. Antibody production in the nitazoxanide-treated mice was of the IgG1-type and not of the IgG2-type as in the benznidazole-treated mice. Nitazoxanide-treated mice had significantly high IFN-γ levels compared to the other infected groups. Serious histological damage could be prevented with nitazoxanide treatment compared to without treatment. In conclusion, nitazoxanide decreased parasitemia levels, indirectly induced the production of IgG antibodies, and partially prevented histopathological damage; however, it did not show therapeutic superiority compared to benznidazole in any of the evaluated aspects. Therefore, the repositioning of nitazoxanide as an alternative treatment against ChD could be considered, since it did not trigger adverse effects that worsened the pathological condition of the infected mice.

9.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848567

ABSTRACT

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Subject(s)
Lentinula , Phylogeny , Asia, Eastern , Thailand
10.
Nucleic Acids Res ; 50(22): 13011-13025, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36478272

ABSTRACT

Control of mRNA translation is key for stress responses. Translation initiation is usually rate-limiting and, in eukaryotes, involves mRNA scanning by the small ribosomal subunit. Despite its importance, many aspects of translation in vivo have not been explored fully, especially at the transcriptome-wide level. A recent method termed translation-complex profiling (TCP-seq) allows transcriptome-wide views of scanning ribosomal subunits. We applied TCP-seq to nutritional stress in the fission yeast Schizosaccharomyces pombe. At initiation sites, we observed multiple complexes resembling those of mammals, and consistent with queuing of scanning subunits. In 5' UTRs, small subunit accumulations were common and may reflect impediments to scanning. A key mediator of stress responses in S. pombe is the Fil1 transcription factor, which is regulated translationally by a poorly-understood mechanism involving upstream Open Reading Frames (uORFs). TCP-seq data of fil1 shows that stress allows scanning subunits to by-pass specific uORFs and reach the fil1 coding sequence. The integration of these observations with reporter assays revealed that fil1 translational control is mediated by a combination of scanning reinitiation-repressive and permissive uORFs, and establishes fil1 as a model for uORF-mediated translational control. Altogether, our transcriptome-wide study reveals general and gene-specific features of translation in a model eukaryote.


Subject(s)
Schizosaccharomyces , Animals , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Transcription Factors/metabolism , Ribosomes/genetics , Ribosomes/metabolism , 5' Untranslated Regions , Ribosome Subunits , Open Reading Frames , Protein Biosynthesis , Mammals/genetics
11.
mBio ; 13(6): e0247222, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36214559

ABSTRACT

The increasing emergence of drug-resistant fungal infections has necessitated a search for new compounds capable of combating fungal pathogens of plants, animals, and humans. Microorganisms represent the main source of antibiotics with applicability in agriculture and in the clinic, but many aspects of their metabolic potential remain to be explored. This report describes the discovery and characterization of a new antifungal compound, solanimycin, produced by a hybrid polyketide/nonribosomal peptide (PKS/NRPS) system in Dickeya solani, the enterobacterial pathogen of potato. Solanimycin was active against a broad range of plant-pathogenic fungi of global economic concern and the human pathogen Candida albicans. The genomic cluster responsible for solanimycin production was defined and analyzed to identify the corresponding biosynthetic proteins, which include four multimodular PKS/NRPS proteins and several tailoring enzymes. Antifungal production in D. solani was enhanced in response to experimental conditions found in infected potato tubers and high-density fungal cultures. Solanimycin biosynthesis was cell density dependent in D. solani and was controlled by both the ExpIR acyl-homoserine lactone and Vfm quorum-sensing systems of the bacterial phytopathogen. The expression of the solanimycin cluster was also regulated at the post-transcriptional level, with the regulator RsmA playing a major role. The solanimycin biosynthetic cluster was conserved across phylogenetically distant bacterial genera, and multiple pieces of evidence support that the corresponding gene clusters were acquired by horizontal gene transfer. Given its potent broad-range antifungal properties, this study suggests that solanimycin and related molecules may have potential utility for agricultural and clinical exploitation. IMPORTANCE Fungal infections represent a major clinical, agricultural, and food security threat worldwide, which is accentuated due to the difficult treatment of these infections. Microorganisms represent a prolific source of antibiotics, and current data support that this enormous biosynthetic potential has been scarcely explored. To improve the performance in the discovery of novel antimicrobials, there is a need to diversify the isolation niches for new antibiotic-producing microorganisms as well as to scrutinize novel phylogenetic positions. With the identification of the antifungal antibiotic solanimycin in a broad diversity of phytopathogenic Dickeya spp., we provide further support for the potential of plant-associated bacteria for the biosynthesis of novel antimicrobials. The complex regulatory networks involved in solanimycin production reflect the high metabolic cost of bacterial secondary metabolism. This metabolic regulatory control makes many antibiotics cryptic under standard laboratory conditions, and mimicking environmental conditions, as shown here, is a strategy to activate cryptic antibiotic clusters.


Subject(s)
Antifungal Agents , Bacteria , Animals , Humans , Antifungal Agents/metabolism , Phylogeny , Bacteria/metabolism , Enterobacteriaceae/genetics , Fungi/metabolism , Anti-Bacterial Agents/metabolism
12.
Mol Phylogenet Evol ; 173: 107494, 2022 08.
Article in English | MEDLINE | ID: mdl-35490968

ABSTRACT

Lentinula (Basidiomycota, Agaricales) includes the most widely cultivated mushroom in the world, Lentinula edodes, also known as shiitake (Japanese) or xiang-gu (Chinese). At present, nine species are recognized in the genus, based on morphology, mating criteria, and geographic distribution. However, analyses of internal transcribed spacers (ITS) of ribosomal RNA genes have suggested that there are cryptic lineages. We analyzed a global-scale phylogenetic dataset from 325 Lentinula individuals from 24 countries in Asia-Australasia and the Americas plus Madagascar, with 325 sequences of ITS, 80 LSU sequences, and 111 sequences of translation elongation factor (tef1-α) genes. We recovered 15 independent lineages (Groups 1-15) that may correspond to species. Lineages in Asia-Australasia (Groups 1-5) and the Americas plus Madagascar (Groups 6-15) formed sister clades. Four lineages are represented only by sequences from single individuals and require further molecular sampling, including L. aff. raphanica (Group 7), L. ixodes (Group 8), L. boryana (Group 12), and L. aff. aciculospora (Group 14). Groups 1 and 5 are here referred to L. edodes and L. aff. edodes, respectively. However, these groups most likely represent the same species and are only recognized as (unsupported) monophyletic lineages by maximum likelihood analyses of ITS alone. Other putative species resolved here include L. lateritia (Group 2), L. novae-zelandieae (Group 3), L. aff. lateritia (Group 4), L. raphanica (Group 6), L. aff. detonsa (Group 9), L. detonsa (Group 10), L. guzmanii sp. nov. (Group 11), L. aciculospora (Group 13), and L. madagasikarensis (Group 15). Groups 9-12 represent the "L. boryana complex". Molecular clock and historical biogeographic analyses suggest that the most recent common ancestor (MRCA) of Lentinula can be placed in the middle Oligocene, ca. 30 million years ago (Ma), and had a likely presence in neotropical America. The MRCA of Lentinula in the Americas and Madagascar lived ca. 22 Ma in the Neotropics and the MRCA of Lentinula in Asia-Australasia lived ca. 6 Ma in Oceania. Given the current knowledge about plate tectonics and paleoclimatic models of the last 30 Myr, our phylogenetic hypothesis suggests that the extant distribution of Lentinula is likely to have arisen, in large part, due to long-distance dispersal. Lentinula collections include at least four dubious taxa that need further taxonomic studies: L. reticeps from the USA (Ohio); L. guarapiensis from Paraguay; Lentinus puiggarii from Brazil (São Paulo); and "L. platinedodes" from Vietnam. Approximately ten of the fifteen Groups are reported on Fagaceae, which appears to be the ancestral substrate of Lentinula.


Subject(s)
Basidiomycota , Lentinula , Shiitake Mushrooms , Brazil , Humans , Phylogeny , Shiitake Mushrooms/genetics
13.
STAR Protoc ; 3(2): 101373, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35586315

ABSTRACT

Characterizing the interactions between RNAs and proteins in vivo is key to better understand how organisms regulate gene expression. Here, we describe a robust and quantitative protocol to measure specific RNA-protein interactions in a native context using RNA immunoprecipitation (RIP). We provide a comprehensive experimental framework to detect cotranslational interactions and detail the quantitative analysis of purified RNAs by PCR and high-throughput sequencing. Although we developed the protocol in fission yeast, it can be readily implemented in other yeast species. For complete details on the use and execution of this protocol, please refer to Toullec et al. (2021).


Subject(s)
Schizosaccharomyces , Yeast, Dried , Immunoprecipitation , Proteins , RNA/genetics , Schizosaccharomyces/genetics
14.
Genetics ; 220(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35100366

ABSTRACT

PomBase (www.pombase.org), the model organism database (MOD) for the fission yeast Schizosaccharomyces pombe, supports research within and beyond the S. pombe community by integrating and presenting genetic, molecular, and cell biological knowledge into intuitive displays and comprehensive data collections. With new content, novel query capabilities, and biologist-friendly data summaries and visualization, PomBase also drives innovation in the MOD community.


Subject(s)
Schizosaccharomyces , Biology , Databases, Factual , Schizosaccharomyces/genetics
15.
Bladder Cancer ; 8(4): 379-393, 2022.
Article in English | MEDLINE | ID: mdl-38994184

ABSTRACT

INTRODUCTION: High grade, non-muscle invasive bladder cancer (NMIBC) is usually treated with intravesical Bacillus Calmette-Guérin. Chemohyperthermia therapy (CHT) may be a novel alternative therapy for the treatment of NMIBC. OBJECTIVE: To evaluate the recurrence-free survival (RFS) of patients treated with CHT using the Combat bladder recirculation system (BRS) for NMIBC. METHODS: This was a prospective multi-institutional study of 1,028 consecutive patients with NMIBC undergoing CHT between 2012 and 2020. A total of 835 patients were treated with CHT with Mitomycin C (MMC). Disease was confirmed on transurethral resection of bladder tumor (TURBT) prior to starting CHT. Follow-up included cystoscopy and subsequent TURBT if recurrence/progression was suspected. The primary endpoint was RFS. Secondary endpoints were progression-free survival (PFS) and adverse events from CHT. RESULTS AND LIMITATIONS: Median follow up was 22.4 months (Interquartile range (IQR): 12.8 -35.8). Median age was 70.4 years (IQR: 62.1 -78.6). A total of 557 (66.7%), 172 (20.6) and 74 (8.9%) of patients were classified to BCG naïve, BCG unresponsive and BCG failure, respectively. The RFS at 12 months and 24 months for BCG naïve was 87.6% (95% CI 85.0% - 90.4%) and 75.0% (95% CI 71.3% - 78.8%), respectively. The RFS at 12 months and 24 months for BCG unresponsive cohort was 78.1% (95% CI 72.0% - 84.7%) and 57.4% (95% CI 49.7% - 66.3%), respectively. The RFS at 24 months for the BCG unresponsive cohort for CIS with/without papillary disease and papillary only disease were 43.6% (95% CI 31.4% -60.4%) and 64.5% (95% CI 55.4% - 75.1%), respectively. Minor adverse events occurred in 216 (25.6%) patients and severe events occurred in 17 (2.0%) patients. CONCLUSIONS: CHT with MMC using the Combat BRS is effective in the medium term and has a favorable adverse event profile.

16.
Pathogens ; 10(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34832544

ABSTRACT

Nervous necrosis virus (NNV), genus Betanodavirus, the etiological agent of the viral encephalopathy and retinopathy (VER), presents a genome with two positive-sense single-stranded RNA segments. Striped jack nervous necrosis virus (SJNNV) and red-spotted grouper nervous necrosis virus (RGNNV), together with reassortants RGNNV/SJNNV, are the betanodaviruses predominantly isolated in Southern Europe. An RGNNV/SJNNV reassortant isolated from Senegalese sole (wt160) causes high mortalities in this fish species. This virus presents differences in the sequence of the 3' non-coding region (NCR) of both segments compared to RGNNV and SJNNV reference strains. Previously, it has been reported that the reversion of two of these differences (nucleotides 1408 and 1412) in the RNA2 3'NCR to the SJNNV-type (recombinant r1408-1412) resulted in a decrease in sole mortality. In the present study, we have applied an OpenArray® to analyse the involvement of sole immune response in the virulence of several recombinants: the r1408-1412 and two recombinants, developed in the present study, harbouring mutations at positions 3073 and 3093 of RNA1 3'NCR to revert them to RGNNV-type. According to the correlation values and to the number of expressed genes, the infection with the RNA2-mutant provoked the most different immune response compared to the immune response triggered after the infection with the rest of the viruses, and the exclusive and high upregulation of genes related to the complement system. The infection with the RNA1-mutants also provoked a decrease in mortality and their replication was delayed at least 24 h compared to the wt160 replication, which could provoke the lag observed in the immune response. Furthermore, the infection with the RNA1-mutants provoked the exclusive expression of pkr and the downregulation of il17rc.

19.
Gene ; 774: 145430, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33444680

ABSTRACT

The transcriptomic response of Senegalese sole (Solea senegalensis) triggered by two betanodaviruses with different virulence to that fish species has been assessed using an OpenArray® platform based on TaqMan™ quantitative PCR. The transcription of 112 genes per sample has been evaluated at two sampling times in two organs (head kidney and eye/brain-pooled samples). Those genes were involved in several roles or pathways, such as viral recognition, regulation of type I (IFN-1)-dependent immune responses, JAK-STAT cascade, interferon stimulated genes, protein ubiquitination, virus responsive genes, complement system, inflammatory response, other immune system effectors, regulation of T-cell proliferation, and proteolysis and apoptosis. The highly virulent isolate, wSs160.3, a wild type reassortant containing a RGNNV-type RNA1 and a SJNNV-type RNA2 segments, induced the expression of a higher number of genes in both tested organs than the moderately virulent strain, a recombinant harbouring mutations in the protruding domain of the capsid protein. The number of differentially expressed genes was higher 2 days after the infection with the wild type isolate than at 3 days post-inoculation. The wild type isolate also elicited an exacerbated interferon 1 response, which, instead of protecting sole against the infection, increases the disease severity by the induction of apoptosis and inflammation-derived immunopathology, although inflammation seems to be modulated by the complement system. Furthermore, results derived from this study suggest a potential important role for some genes with high expression after infection with the highly virulent virus, such as rtp3, sacs and isg15. On the other hand, the infection with the mutant does not induce immune response, probably due to an altered recognition by the host, which is supported by a different viral recognition pathway, involving myd88 and tbkbp1.


Subject(s)
Fish Diseases/genetics , Fish Diseases/virology , Flatfishes/genetics , Flatfishes/virology , Immunogenetic Phenomena/genetics , Nodaviridae , Animals , Brain/metabolism , Eye/metabolism , Fish Diseases/immunology , Flatfishes/immunology , Gene Expression Profiling , Head Kidney/metabolism , Interferon Type I/metabolism , Nodaviridae/immunology , Nodaviridae/pathogenicity , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/veterinary , RNA-Seq , Virulence , Virus Replication
20.
Nucleic Acids Res ; 49(1): 383-399, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33313903

ABSTRACT

Translational control is essential in response to stress. We investigated the translational programmes launched by the fission yeast Schizosaccharomyces pombe upon five environmental stresses. We also explored the contribution of defence pathways to these programmes: The Integrated Stress Response (ISR), which regulates translation initiation, and the stress-response MAPK pathway. We performed ribosome profiling of cells subjected to each stress, in wild type cells and in cells with the defence pathways inactivated. The transcription factor Fil1, a functional homologue of the yeast Gcn4 and the mammalian Atf4 proteins, was translationally upregulated and required for the response to most stresses. Moreover, many mRNAs encoding proteins required for ribosome biogenesis were translationally downregulated. Thus, several stresses trigger a universal translational response, including reduced ribosome production and a Fil1-mediated transcriptional programme. Surprisingly, ribosomes stalled on tryptophan codons upon oxidative stress, likely due to a decrease in charged tRNA-Tryptophan. Stalling caused ribosome accumulation upstream of tryptophan codons (ribosome queuing/collisions), demonstrating that stalled ribosomes affect translation elongation by other ribosomes. Consistently, tryptophan codon stalling led to reduced translation elongation and contributed to the ISR-mediated inhibition of initiation. We show that different stresses elicit common and specific translational responses, revealing a novel role in Tryptophan-tRNA availability.


Subject(s)
Codon , Oxidative Stress/genetics , Peptide Chain Elongation, Translational , RNA, Transfer, Trp/genetics , Ribosomes/metabolism , Schizosaccharomyces/genetics , Tryptophan/genetics , Cadmium Compounds/pharmacology , Eukaryotic Initiation Factor-2/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Hot Temperature , Hydrogen Peroxide/pharmacology , MAP Kinase Signaling System , Methyl Methanesulfonate/pharmacology , Mitogen-Activated Protein Kinases/deficiency , Osmotic Pressure , RNA, Fungal/genetics , RNA, Messenger/genetics , Schizosaccharomyces/drug effects , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Sorbitol/pharmacology , Sulfates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...