Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Stem Cell Res Ther ; 12(1): 399, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34256848

ABSTRACT

BACKGROUND: Umbilical cord blood (UCB) is a clinically relevant alternative source of hematopoietic stem/progenitor cells (HSPC). To overcome the low cell number per UCB unit, ex vivo expansion of UCB HSPC in co-culture with mesenchymal stromal cells (MSC) has been established. Bone marrow (BM)-derived MSC have been the standard choice, but the use of MSC from alternative sources, less invasive and discardable, could ease clinical translation of an expanded CD34+ cell product. Here, we compare the capacity of BM-, umbilical cord matrix (UCM)-, and adipose tissue (AT)-derived MSC, expanded with/without xenogeneic components, to expand/maintain UCB CD34+-enriched cells ex vivo. METHODS: UCB CD34+-enriched cells were isolated from cryopreserved mononuclear cells and cultured for 7 days over an established feeder layer (FL) of BM-, UCM-, or AT-derived MSC, previously expanded using fetal bovine serum (FBS) or fibrinogen-depleted human platelet lysate (HPL) supplemented medium. UCB cells were cultured in serum-free medium supplemented with SCF/TPO/FLT3-L/bFGF. Fold increase in total nucleated cells (TNC) as well as immunophenotype and clonogenic potential (cobblestone area-forming cells and colony-forming unit assays) of the expanded hematopoietic cells were assessed. RESULTS: MSC from all sources effectively supported UCB HSPC expansion/maintenance ex vivo, with expansion factors (in TNC) superior to 50x, 70x, and 80x in UCM-, BM-, and AT-derived MSC co-cultures, respectively. Specifically, AT-derived MSC co-culture resulted in expanded cells with similar phenotypic profile compared to BM-derived MSC, but resulting in higher total cell numbers. Importantly, a subpopulation of more primitive cells (CD34+CD90+) was maintained in all co-cultures. In addition, the presence of a MSC FL was essential to maintain and expand a subpopulation of progenitor T cells (CD34+CD7+). The use of HPL to expand MSC prior to co-culture establishment did not influence the expansion potential of UCB cells. CONCLUSIONS: AT represents a promising alternative to BM as a source of MSC for co-culture protocols to expand/maintain HSPC ex vivo. On the other hand, UCM-derived MSC demonstrated inferior hematopoietic supportive capacity compared to MSC from adult tissues. Despite HPL being considered an alternative to FBS for clinical-scale manufacturing of MSC, further studies are needed to determine its impact on the hematopoietic supportive capacity of these cells.


Subject(s)
Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , Adult , Antigens, CD34 , Cells, Cultured , Fetal Blood , Hematopoietic Stem Cells , Humans
2.
Transfusion ; 59(12): 3560-3569, 2019 12.
Article in English | MEDLINE | ID: mdl-31769050

ABSTRACT

BACKGROUND: Umbilical cord blood (UCB) is a source of hematopoietic stem cells for transplantation, offering an alternative for patients unable to find a matched adult donor. UCB is also a versatile source of hematopoietic stem and progenitor cells (hCD34 + HSPCs) for research into hematologic diseases, in vitro expansion, ex vivo gene therapy, and adoptive immunotherapy. For these studies, there is a need to isolate hCD34 + HSPCs from cryopreserved units, and protocols developed for isolation from fresh cord blood are unsuitable. STUDY DESIGN: This study describes a modified method for isolating hCD34 + HSPCs from cryopreserved UCB. It uses the Plasmatherm system for thawing, followed by CD34 microbead magnetic-activated cell sorting isolation with a cell separation kit (Whole Blood Columns, Miltenyi Biotec). hCD34 + HSPC phenotypes and functionality were assessed in vitro and hematologic reconstitution determined in vivo in immunodeficient mice. RESULTS: Total nucleated cell recovery after thawing and washing was 44.7 ± 11.7%. Recovery of hCD34 + HSPCs after application of thawed cells to Whole Blood Columns was 77.5 ± 22.6%. When assessed in two independent laboratories, the hCD34+ cell purities were 71.7 ± 10.7% and 87.8 ± 2.4%. Transplantation of the enriched hCD34 + HSPCs into NSG mice revealed the presence of repopulating hematopoietic stem cells (estimated frequency of 0.07%) and multilineage engraftment. CONCLUSION: This provides a simplified protocol for isolating high-purity human CD34 + HSPCs from banked UCB adaptable to current Good Manufacturing Practice. This protocol reduces the number of steps and associated risks and thus total production costs. Importantly, the isolated CD34 + HSPCs possess in vivo repopulating activity in immunodeficient mice, making them a suitable starting population for ex vivo culture and gene editing.


Subject(s)
Antigens, CD34/metabolism , Fetal Blood/cytology , Hematopoietic Stem Cells/cytology , Stem Cells/cytology , Animals , Cryopreservation , Gene Editing , Genetic Therapy , Hematopoietic Stem Cells/metabolism , Humans , Immunotherapy , Mice , Stem Cells/metabolism
3.
Exp Hematol ; 57: 21-29, 2018 01.
Article in English | MEDLINE | ID: mdl-28911908

ABSTRACT

Integration-deficient lentiviruses (IdLVs) deliver genes effectively to tissues but are lost rapidly from dividing cells. This property can be harnessed to express transgenes transiently to manipulate cell biology. Here, we demonstrate the utility of short-term gene expression to improve functional potency of hematopoietic stem and progenitor cells (HSPCs) during transplantation by delivering HOXB4 and Angptl3 using IdLVs to enhance the engraftment of HSPCs. Constitutive overexpression of either of these genes is likely to be undesirable, but the transient nature of IdLVs reduces this risk and those associated with unsolicited gene expression in daughter cells. Transient expression led to increased multilineage hematopoietic engraftment in in vivo competitive repopulation assays without the side effects reported in constitutive overexpression models. Adult stem cell fate has not been programmed previously using IdLVs, but we demonstrate that these transient gene expression tools can produce clinically relevant alterations or be applied to investigate basic biology.


Subject(s)
Genetic Vectors/genetics , Hematopoietic Stem Cells/physiology , Lentivirus/genetics , Transduction, Genetic , Angiopoietin-Like Protein 3 , Angiopoietin-like Proteins/biosynthesis , Angiopoietin-like Proteins/genetics , Animals , Cell Lineage , Gene Expression Regulation , Genes, Reporter , Graft Survival , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Humans , K562 Cells , Mice , Mice, Inbred C57BL , Radiation Chimera , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transgenes
4.
Cytotherapy ; 17(12): 1777-84, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26475753

ABSTRACT

BACKGROUND AIMS: The therapeutic application of CD34+ circulating progenitor cells (which includes endothelial progenitor cells) has been hampered by the quantity and quality of isolated circulating CD34(+) cells from the patient's peripheral blood. Our group had previously established a suspension culture system for human CD34(+) cells, with increased quantity and quality (QQ) of the angiogenic cell product. We successfully scaled up the expansion process with the use of culture bags because there is the need to move toward a dynamic and fully controlled bioreactor system to meet Good Manufacturing Practice (GMP) standards and attain clinically meaningful cell doses in a time- and cost-effective way. METHODS: CD34(+) cells isolated from mobilized peripheral blood of healthy donors were expanded ex vivo for 7 days in QQ medium (serum-free) in cell culture bags (30 mL) and pre- and post-expansion cells were characterized by means of flow cytometry and quantitative polymerase chain reaction; angiogenic potential was assessed by use of the in vitro tube formation assay. RESULTS: Our data show effective expansion of the cultured population (7-fold) while maintaining the stem/progenitor content and increasing the endothelial population. Moreover, post-expanded cells showed higher tube formation capacity compared with pre-expanded cells. In addition, an upregulation of the anti-inflammatory gene expression and a downregulation of pro-inflammatory genes were observed, which suggests that the increase in angiogenic potential is not paired with an increase in the inflammatory profile. CONCLUSIONS: The QQ expansion method was successfully scaled up to cell culture bags and was able to meet GMP standards, with a higher in vitro angiogenic profile.


Subject(s)
Antigens, CD34/metabolism , Culture Media, Serum-Free/pharmacology , Endothelial Progenitor Cells/metabolism , Inflammation/immunology , Neovascularization, Physiologic/physiology , Bioreactors , Cell Culture Techniques , Cell Cycle , Cell Proliferation , Cells, Cultured , Flow Cytometry , Healthy Volunteers , Humans , Inflammation/genetics , Up-Regulation
5.
PLoS One ; 10(10): e0139870, 2015.
Article in English | MEDLINE | ID: mdl-26479722

ABSTRACT

BACKGROUND: Mesenchymal stem/stromal cells have unique properties favorable to their use in clinical practice and have been studied for cardiac repair. However, these cells are larger than coronary microvessels and there is controversy about the risk of embolization and microinfarctions, which could jeopardize the safety and efficacy of intracoronary route for their delivery. The index of microcirculatory resistance (IMR) is an invasive method for quantitatively assessing the coronary microcirculation status. OBJECTIVES: To examine heart microcirculation after intracoronary injection of mesenchymal stem/stromal cells with the index of microcirculatory resistance. METHODS: Healthy swine were randomized to receive by intracoronary route either 30x106 MSC or the same solution with no cells (1% human albumin/PBS) (placebo). Blinded operators took coronary pressure and flow measurements, prior to intracoronary infusion and at 5 and 30 minutes post-delivery. Coronary flow reserve (CFR) and the IMR were compared between groups. RESULTS: CFR and IMR were done with a variance within the 3 transit time measurements of 6% at rest and 11% at maximal hyperemia. After intracoronary infusion there were no significant differences in CFR. The IMR was significantly higher in MSC-injected animals (at 30 minutes, 14.2U vs. 8.8U, p = 0.02) and intragroup analysis showed a significant increase of 112% from baseline to 30 minutes after cell infusion, although no electrocardiographic changes or clinical deterioration were noted. CONCLUSION: Overall, this study provides definitive evidence of microcirculatory disruption upon intracoronary administration of mesenchymal stem/stromal cells, in a large animal model closely resembling human cardiac physiology, function and anatomy.


Subject(s)
Coronary Circulation , Coronary Vessels/cytology , Coronary Vessels/physiology , Mesenchymal Stem Cell Transplantation , Microcirculation , Animals , Female , Hemodynamics , Humans , Male , Swine
6.
BMC Microbiol ; 10: 180, 2010 Jun 23.
Article in English | MEDLINE | ID: mdl-20573193

ABSTRACT

BACKGROUND: The TolC protein from Sinorhizobium meliloti has previously been demonstrated to be required for establishing successful biological nitrogen fixation symbiosis with Medicago sativa. It is also needed in protein and exopolysaccharide secretion and for protection against osmotic and oxidative stresses. Here, the transcriptional profile of free-living S. meliloti 1021 tolC mutant is described as a step toward understanding its role in the physiology of the cell. RESULTS: Comparison of tolC mutant and wild-type strains transcriptomes showed 1177 genes with significantly increased expression while 325 had significantly decreased expression levels. The genes with an increased expression suggest the activation of a cytoplasmic and extracytoplasmic stress responses possibly mediated by the sigma factor RpoH1 and protein homologues of the CpxRA two-component regulatory system of Enterobacteria, respectively. Stress conditions are probably caused by perturbation of the cell envelope. Consistent with gene expression data, biochemical analysis indicates that the tolC mutant suffers from oxidative stress. This is illustrated by the elevated enzyme activity levels detected for catalase, superoxide dismutase and glutathione reductase. The observed increase in the expression of genes encoding products involved in central metabolism and transporters for nutrient uptake suggests a higher metabolic rate of the tolC mutant. We also demonstrated increased swarming motility in the tolC mutant strain. Absence of functional TolC caused decreased expression mainly of genes encoding products involved in nitrogen metabolism and transport. CONCLUSION: This work shows how a mutation in the outer membrane protein TolC, common to many bacterial transport systems, affects expression of a large number of genes that act in concert to restore cell homeostasis. This finding further underlines the fundamental role of this protein in Sinorhizobium meliloti biology.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Gene Expression Regulation, Bacterial , Sinorhizobium meliloti/physiology , Bacterial Outer Membrane Proteins/genetics , Mutation , Oxidative Stress , Sinorhizobium meliloti/genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...