Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(2): 504-517, 2023 01.
Article in English | MEDLINE | ID: mdl-36318600

ABSTRACT

Anthropogenic changes to land use drive concomitant changes in biodiversity, including that of the soil microbiota. However, it is not clear how increasing intensity of human disturbance is reflected in the soil microbial communities. To address this issue, we used amplicon sequencing to quantify the microbiota (bacteria and fungi) in the soil of forests (n = 312) experiencing four different land uses, national parks (set aside for nature conservation), managed (for forestry purposes), suburban (on the border of an urban area) and urban (fully within a town or city), which broadly represent a gradient of anthropogenic disturbance. Alpha diversity of bacteria and fungi increased with increasing levels of anthropogenic disturbance, and was thus highest in urban forest soils and lowest in the national parks. The forest soil microbial communities were structured according to the level of anthropogenic disturbance, with a clear urban signature evident in both bacteria and fungi. Despite notable differences in community composition, there was little change in the predicted functional traits of urban bacteria. By contrast, urban soils exhibited a marked loss of ectomycorrhizal fungi. Soil pH was positively correlated with the level of disturbance, and thus was the strongest predictor of variation in alpha and beta diversity of forest soil communities, indicating a role of soil alkalinity in structuring urban soil microbial communities. Hence, our study shows how the properties of urban forest soils promote an increase in microbial diversity and a change in forest soil microbiota composition.


Subject(s)
Mycorrhizae , Soil , Humans , Soil/chemistry , Forests , Fungi/genetics , Bacteria/genetics , Biodiversity , Soil Microbiology
2.
PLoS One ; 16(7): e0254254, 2021.
Article in English | MEDLINE | ID: mdl-34264981

ABSTRACT

Taiga bean goose (Anser fabalis fabalis) is an endangered subspecies that breeds sporadically in remote habitats in the arctic and boreal zones. Due to its elusive behaviour, there is a paucity of knowledge on the behaviour of taiga bean goose during the breeding season, and survey methods for monitoring numbers in the breeding areas are lacking. Camera traps are a useful tool for wildlife monitoring, particularly when there is a need for non-invasive methods due to the shy nature of the species. In this study, we tested the use of camera traps to investigate seasonal and diel activity patterns of taiga bean goose in Finland over two successive breeding seasons, 2018 and 2019. We did this by modelling counts of geese from images with generalized linear and additive mixed models. The camera type (cameras placed by experts specialized in bean goose ecology vs randomly placed cameras) did not influence the count of taiga bean goose (p = 0.386). However, the activity varied significantly by region, Julian day, time of day and temperature, with the study site (individual peatland) and year adding substantial random variation and uncertainty in the counts. Altogether, the best fitting model explained nearly 70% of the variation in taiga bean goose activity. The peak in activity occurred about a month later in the southernmost region compared to the more northern regions, which may indicate behaviours related to migration rather than breeding and moulting. Our results show that long-term monitoring with game camera traps provide a potential unobtrusive approach for studying the behavioural patterns of taiga bean goose and can increase our ecological knowledge of this little-known subspecies. The results can be applied to planning of the annual censuses and finding the optimal time frame for their execution.


Subject(s)
Geese , Animals , Seasons , Taiga
3.
Pest Manag Sci ; 77(2): 620-627, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32909328

ABSTRACT

BACKGROUND: Moose (Alces alces L.) populations and moose damage in forests are debated in Nordic countries with dense moose populations. Moose populations and food resources vary greatly, both spatially and temporally, and reliable data covering both variables simultaneously at the same scale have seldom been available. We modelled the effect of moose population density and forest resources on the area of moose damage at regional scale, referring to moose management areas (MMA). Forest data and moose damage data originated from the Finnish National Forest Inventory, and the moose population data came from a Bayesian moose model. For modelling, average values of moose population, damage and forest variables were calculated for the periods 2004-2008 and 2009-2013 for each MMA. The MMAs were further classified into one of four larger geographical zones. The area of moose damage was used as a dependent variable, and the proportions of different types of forests and moose population densities per land area or area of seedling stands as explanatory variables. The relationships were modelled with a linear mixed-effects model with an exponential spatial correlation structure. RESULTS: The area of moose damage was best explained by total forest area, proportions of plantations and mature forests, and moose population density per land area or the proportion of plantations. There were differences among the biogeographical zones in how different variables explained the amount of damage. CONCLUSION: The results provide tools for analyzing the regional effects of moose population density and the amount of food resources on the amount of moose damage. This information can be used in reconciling sustainable moose population levels and the amount of damage.


Subject(s)
Deer , Seedlings , Animals , Bayes Theorem , Forests , Population Density
4.
Parasit Vectors ; 9: 54, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26825371

ABSTRACT

BACKGROUND: The incidence of tick-borne encephalitis (TBE) in humans has increased in Finland, and the disease has emerged in new foci. These foci have been investigated to determine the circulating virus subtype, the tick host species and the ecological parameters, but countrywide epidemiological information on the distribution of TBEV has been limited. METHODS: In this study, we screened sera from hunter-harvested wild cervids for the presence of antibodies against tick-borne encephalitis virus (TBEV) with a hemagglutination inhibition test. The positive results were confirmed by a neutralisation assay. RESULTS: Nine (0.74%) of 1213 moose, one (0.74%) of 135 white-tailed deer, and none of the 17 roe deer were found seropositive for TBEV. A close geographical congruence between seropositive cervids and recently reported human TBE cases was observed: nine of the ten seropositive animals were from known endemic areas. CONCLUSIONS: Our results confirm the local circulation of TBEV in several known endemic areas. One seropositive moose had been shot in an area where human TBE cases have not been reported, suggesting a possible new focus. Moose appear to be a useful sentinel animal for the presence of TBEV in the taiga region.


Subject(s)
Antibodies, Viral/blood , Deer , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/veterinary , Animals , Encephalitis, Tick-Borne/epidemiology , Finland/epidemiology , Hemagglutination Tests , Neutralization Tests , Seroepidemiologic Studies
5.
Glob Chang Biol ; 20(4): 1115-25, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24115403

ABSTRACT

The adaptation of different species to warming temperatures has been increasingly studied. Moose (Alces alces) is the largest of the ungulate species occupying the northern latitudes across the globe, and in Finland it is the most important game species. It is very well adapted to severe cold temperatures, but has a relatively low tolerance to warm temperatures. Previous studies have documented changes in habitat use by moose due to high temperatures. In many of these studies, the used areas have been classified according to how much thermal cover they were assumed to offer based on satellite/aerial imagery data. Here, we identified the vegetation structure in the areas used by moose under different thermal conditions. For this purpose, we used airborne laser scanning (ALS) data extracted from the locations of GPS-collared moose. This provided us with detailed information about the relationships between moose and the structure of forests it uses in different thermal conditions and we were therefore able to determine and differentiate between the canopy structures at locations occupied by moose during different thermal conditions. We also discovered a threshold beyond which moose behaviour began to change significantly: as day temperatures began to reach 20 °C and higher, the search for areas with higher and denser canopies during daytime became evident. The difference was clear when compared to habitat use at lower temperatures, and was so strong that it provides supporting evidence to previous studies, suggesting that moose are able to modify their behaviour to cope with high temperatures, but also that the species is likely to be affected by warming climate.


Subject(s)
Deer/physiology , Ecosystem , Trees , Animals , Behavior, Animal , Female , Finland , Geographic Information Systems , Lasers , Male , Models, Theoretical , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...