Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(50): e2201097119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36469766

ABSTRACT

Despite the robust healing capacity of the liver, regenerative failure underlies numerous hepatic diseases, including the JAG1 haploinsufficient disorder, Alagille syndrome (ALGS). Cholestasis due to intrahepatic duct (IHD) paucity resolves in certain ALGS cases but fails in most with no clear mechanisms or therapeutic interventions. We find that modulating jag1b and jag2b allele dosage is sufficient to stratify these distinct outcomes, which can be either exacerbated or rescued with genetic manipulation of Notch signaling, demonstrating that perturbations of Jag/Notch signaling may be causal for the spectrum of ALGS liver severities. Although regenerating IHD cells proliferate, they remain clustered in mutants that fail to recover due to a blunted elevation of Notch signaling in the distal-most IHD cells. Increased Notch signaling is required for regenerating IHD cells to branch and segregate into the peripheral region of the growing liver, where biliary paucity is commonly observed in ALGS. Mosaic loss- and-gain-of-function analysis reveals Sox9b to be a key Notch transcriptional effector required cell autonomously to regulate these cellular dynamics during IHD regeneration. Treatment with a small-molecule putative Notch agonist stimulates Sox9 expression in ALGS patient fibroblasts and enhances hepatic sox9b expression, rescues IHD paucity and cholestasis, and increases survival in zebrafish mutants, thereby providing a proof-of-concept therapeutic avenue for this disorder.


Subject(s)
Alagille Syndrome , Bile Ducts, Intrahepatic , Signal Transduction , Animals , Humans , Alagille Syndrome/genetics , Alagille Syndrome/metabolism , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Mosaicism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Regeneration , Bile Ducts, Intrahepatic/cytology , Bile Ducts, Intrahepatic/pathology , Fibroblasts
2.
Hepatology ; 75(3): 567-583, 2022 03.
Article in English | MEDLINE | ID: mdl-34569629

ABSTRACT

BACKGROUND AND AIMS: Alagille Syndrome (ALGS) is a congenital disorder caused by mutations in the Notch ligand gene JAGGED1, leading to neonatal loss of intrahepatic duct (IHD) cells and cholestasis. Cholestasis can resolve in certain patients with ALGS, suggesting regeneration of IHD cells. However, the mechanisms driving IHD cell regeneration following Jagged loss remains unclear. Here, we show that cholestasis due to developmental loss of IHD cells can be consistently phenocopied in zebrafish with compound jagged1b and jagged2b mutations or knockdown. APPROACH AND RESULTS: Leveraging the transience of jagged knockdown in juvenile zebrafish, we find that resumption of Jagged expression leads to robust regeneration of IHD cells through a Notch-dependent mechanism. Combining multiple lineage tracing strategies with whole-liver three-dimensional imaging, we demonstrate that the extrahepatic duct (EHD) is the primary source of multipotent progenitors that contribute to the regeneration, but not to the development, of IHD cells. Hepatocyte-to-IHD cell transdifferentiation is possible but rarely detected. Progenitors in the EHD proliferate and migrate into the liver with Notch signaling loss and differentiate into IHD cells if Notch signaling increases. Tissue-specific mosaic analysis with an inducible dominant-negative Fgf receptor suggests that Fgf signaling from the surrounding mesenchymal cells maintains this extrahepatic niche by directly preventing premature differentiation and allocation of EHD progenitors to the liver. Indeed, transcriptional profiling and functional analysis of adult mouse EHD organoids uncover their distinct differentiation and proliferative potential relative to IHD organoids. CONCLUSIONS: Our data show that IHD cells regenerate upon resumption of Jagged/Notch signaling, from multipotent progenitors originating from an Fgf-dependent extrahepatic stem cell niche. We posit that if Jagged/Notch signaling is augmented, through normal stochastic variation, gene therapy, or a Notch agonist, regeneration of IHD cells in patients with ALGS may be enhanced.


Subject(s)
Alagille Syndrome , Bile Ducts, Extrahepatic , Bile Ducts, Intrahepatic , Calcium-Binding Proteins , Jagged-1 Protein , Liver Regeneration/physiology , Receptors, Notch/metabolism , Zebrafish Proteins , Alagille Syndrome/genetics , Alagille Syndrome/metabolism , Animals , Bile Ducts, Extrahepatic/growth & development , Bile Ducts, Extrahepatic/physiology , Bile Ducts, Intrahepatic/growth & development , Bile Ducts, Intrahepatic/physiology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Transdifferentiation , Disease Models, Animal , Humans , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Liver/growth & development , Liver/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
Methods Mol Biol ; 1951: 135-141, 2019.
Article in English | MEDLINE | ID: mdl-30825149

ABSTRACT

Macrophages are phagocytic cells that actively engulf and kill microorganisms within a specialized phagolysosomal system. Several pathogenic bacteria, however, actively co-opt host mechanisms and escape from microbial digestion to establish intracellular replication within macrophages. This chapter highlights detailed protocols to measure the effects of the LXR pathway on bacterial infection of murine bone marrow-derived macrophages.


Subject(s)
Bacterial Infections/metabolism , Liver X Receptors/agonists , Liver X Receptors/metabolism , Macrophages/drug effects , Macrophages/metabolism , Animals , Bacterial Infections/microbiology , Biomarkers , Flow Cytometry , Immunophenotyping , Mice , Microscopy, Confocal , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/metabolism
4.
Mol Cell Biol ; 38(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29507185

ABSTRACT

The liver X receptors (LXRs) are ligand-activated nuclear receptors with established roles in the maintenance of lipid homeostasis in multiple tissues. LXRs exert additional biological functions as negative regulators of inflammation, particularly in macrophages. However, the transcriptional responses controlled by LXRs in other myeloid cells, such as dendritic cells (DCs), are still poorly understood. Here we used gain- and loss-of-function models to characterize the impact of LXR deficiency on DC activation programs. Our results identified an LXR-dependent pathway that is important for DC chemotaxis. LXR-deficient mature DCs are defective in stimulus-induced migration in vitro and in vivo Mechanistically, we show that LXRs facilitate DC chemotactic signaling by regulating the expression of CD38, an ectoenzyme important for leukocyte trafficking. Pharmacological or genetic inactivation of CD38 activity abolished the LXR-dependent induction of DC chemotaxis. Using the low-density lipoprotein receptor-deficient (LDLR-/-) LDLR-/- mouse model of atherosclerosis, we also demonstrated that hematopoietic CD38 expression is important for the accumulation of lipid-laden myeloid cells in lesions, suggesting that CD38 is a key factor in leukocyte migration during atherogenesis. Collectively, our results demonstrate that LXRs are required for the efficient emigration of DCs in response to chemotactic signals during inflammation.


Subject(s)
Chemotaxis/physiology , Dendritic Cells/physiology , Liver X Receptors/physiology , ADP-ribosyl Cyclase 1/metabolism , Animals , Cells, Cultured , Dendritic Cells/cytology , Inflammation , Lipid Metabolism , Liver X Receptors/genetics , Macrophages , Mice , Mice, Inbred C57BL , Mice, Knockout , Orphan Nuclear Receptors , Receptors, Cytoplasmic and Nuclear , Signal Transduction
5.
J Neuroinflammation ; 14(1): 54, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28302135

ABSTRACT

BACKGROUND: CCAAT/enhancer binding protein ß (C/EBPß) is a transcription factor that regulates the expression of important pro-inflammatory genes in microglia. Mice deficient for C/EBPß show protection against excitotoxic and ischemic CNS damage, but the involvement in this neuroprotective effect of the various C/EBPß-expressing cell types is not solved. Since C/EBPß-deficient microglia show attenuated neurotoxicity in culture, we hypothesized that specific C/EBPß deficiency in microglia could be neuroprotective in vivo. In this study, we have tested this hypothesis by generating mice with myeloid C/EBPß deficiency. METHODS: Mice with myeloid C/EBPß deficiency were generated by crossing LysMCre and C/EBPßfl/fl mice. Primary microglial cultures from C/EBPßfl/fl and LysMCre-C/EBPßfl/fl mice were treated with lipopolysaccharide ± interferon γ (IFNγ) for 6 h, and gene expression was analyzed by RNA sequencing. Gene expression and C/EBPß deletion were analyzed in vivo in microglia isolated from the brains of C/EBPßfl/fl and LysMCre-C/EBPßfl/fl mice treated systemically with lipolysaccharide or vehicle. Mice of LysMCre-C/EBPßfl/fl or control genotypes were subjected to experimental autoimmune encephalitis and analyzed for clinical signs for 52 days. One- or two-way ANOVA or Kruskal-Wallis with their appropriate post hoc tests were used. RESULTS: LysMCre-C/EBPßfl/fl mice showed an efficiency of C/EBPß deletion in microglia of 100 and 90% in vitro and in vivo, respectively. These mice were devoid of female infertility, perinatal mortality and reduced lifespan that are associated to full C/EBPß deficiency. Transcriptomic analysis of C/EBPß-deficient primary microglia revealed C/EBPß-dependent expression of 1068 genes, significantly enriched in inflammatory and innate immune responses GO terms. In vivo, microglial expression of the pro-inflammatory genes Cybb, Ptges, Il23a, Tnf and Csf3 induced by systemic lipopolysaccharide injection was also blunted by C/EBPß deletion. CNS expression of C/EBPß was upregulated in experimental autoimmune encephalitis and in multiple sclerosis samples. Finally, LysMCre-C/EBPßfl/fl mice showed robust attenuation of clinical signs in experimental autoimmune encephalitis. CONCLUSION: This study provides new data that support a central role for C/EBPß in the biology of activated microglia, and it offers proof of concept for the therapeutic potential of microglial C/EBPß inhibition in multiple sclerosis.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/deficiency , Encephalomyelitis, Autoimmune, Experimental/pathology , Microglia/metabolism , Aged , Aged, 80 and over , Animals , Animals, Newborn , Biological Ontologies , CCAAT-Enhancer-Binding Protein-beta/genetics , CD11b Antigen/metabolism , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/therapy , Female , Humans , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Male , Mice, Transgenic , Middle Aged , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein/toxicity , Nitric Oxide/metabolism , Peptide Fragments/toxicity , Phagocytosis/drug effects , Phagocytosis/genetics
6.
Cell Rep ; 18(5): 1241-1255, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28147278

ABSTRACT

Macrophages exert potent effector functions against invading microorganisms but constitute, paradoxically, a preferential niche for many bacterial strains to replicate. Using a model of infection by Salmonella Typhimurium, we have identified a molecular mechanism regulated by the nuclear receptor LXR that limits infection of host macrophages through transcriptional activation of the multifunctional enzyme CD38. LXR agonists reduced the intracellular levels of NAD+ in a CD38-dependent manner, counteracting pathogen-induced changes in macrophage morphology and the distribution of the F-actin cytoskeleton and reducing the capability of non-opsonized Salmonella to infect macrophages. Remarkably, pharmacological treatment with an LXR agonist ameliorated clinical signs associated with Salmonella infection in vivo, and these effects were dependent on CD38 expression in bone-marrow-derived cells. Altogether, this work reveals an unappreciated role for CD38 in bacterial-host cell interaction that can be pharmacologically exploited by activation of the LXR pathway.


Subject(s)
Liver X Receptors/metabolism , Macrophages/metabolism , NAD/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Salmonella Infections/metabolism , Salmonella typhimurium/pathogenicity , ADP-ribosyl Cyclase 1/metabolism , Actin Cytoskeleton/metabolism , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Female , Male , Mice , RAW 264.7 Cells
7.
J Immunol ; 190(12): 6520-32, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23686490

ABSTRACT

Liver X receptors (LXRs) exert key functions in lipid homeostasis and in control of inflammation. In this study we have explored the impact of LXR activation on the macrophage response to the endogenous inflammatory cytokine IFN-γ. Transcriptional profiling studies demonstrate that ∼38% of the IFN-γ-induced transcriptional response is repressed by LXR activation in macrophages. LXRs also mediated inhibitory effects on selected IFN-γ-induced genes in primary microglia and in a model of IFN-γ-induced neuroinflammation in vivo. LXR activation resulted in reduced STAT1 recruitment to the promoters tested in this study without affecting STAT1 phosphorylation. A closer look into the mechanism revealed that SUMOylation of LXRs, but not the presence of nuclear receptor corepressor 1, was required for repression of the NO synthase 2 promoter. We have also analyzed whether IFN-γ signaling exerts reciprocal effects on LXR targets. Treatment with IFN-γ inhibited, in a STAT1-dependent manner, the LXR-dependent upregulation of selective targets, including ATP-binding cassette A1 (ABCA1) and sterol response element binding protein 1c. Downregulation of ABCA1 expression correlated with decreased cholesterol efflux to apolipoprotein A1 in macrophages stimulated with IFN-γ. The inhibitory effects of IFN-γ on LXR signaling did not involve reduced binding of LXR/retinoid X receptor heterodimers to target gene promoters. However, overexpression of the coactivator CREB-binding protein/p300 reduced the inhibitory actions of IFN-γ on the Abca1 promoter, suggesting that competition for CREB-binding protein may contribute to STAT1-dependent downregulation of LXR targets. The results from this study suggest an important level of bidirectional negative cross-talk between IFN-γ/STAT1 and LXRs with implications both in the control of IFN-γ-mediated immune responses and in the regulation of lipid metabolism.


Subject(s)
Interferon-gamma/immunology , Macrophages/immunology , Orphan Nuclear Receptors/immunology , Receptor Cross-Talk/immunology , STAT1 Transcription Factor/immunology , Animals , Blotting, Western , Chromatin Immunoprecipitation , Gene Expression Regulation/immunology , Inflammation/immunology , Lipid Metabolism/physiology , Liver X Receptors , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Orphan Nuclear Receptors/metabolism , Real-Time Polymerase Chain Reaction , STAT1 Transcription Factor/metabolism , Signal Transduction/physiology , Transcriptome
8.
J Biol Chem ; 287(28): 23489-501, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22553202

ABSTRACT

The NAD(+)-dependent deacetylase SIRT1 is a key regulator of several aspects of metabolism and aging. SIRT1 activation is beneficial for several human diseases, including metabolic syndrome, diabetes, obesity, liver steatosis, and Alzheimer disease. We have recently shown that the protein deleted in breast cancer 1 (DBC1) is a key regulator of SIRT1 activity in vivo. Furthermore, SIRT1 and DBC1 form a dynamic complex that is regulated by the energetic state of the organism. Understanding how the interaction between SIRT1 and DBC1 is regulated is therefore essential to design strategies aimed to activate SIRT1. Here, we investigated which pathways can lead to the dissociation of SIRT1 and DBC1 and consequently to SIRT1 activation. We observed that PKA activation leads to a fast and transient activation of SIRT1 that is DBC1-dependent. In fact, an increase in cAMP/PKA activity resulted in the dissociation of SIRT1 and DBC1 in an AMP-activated protein kinase (AMPK)-dependent manner. Pharmacological AMPK activation led to SIRT1 activation by a DBC1-dependent mechanism. Indeed, we found that AMPK activators promote SIRT1-DBC1 dissociation in cells, resulting in an increase in SIRT1 activity. In addition, we observed that the SIRT1 activation promoted by PKA and AMPK occurs without changes in the intracellular levels of NAD(+). We propose that PKA and AMPK can acutely activate SIRT1 by inducing dissociation of SIRT1 from its endogenous inhibitor DBC1. Our experiments provide new insight on the in vivo mechanism of SIRT1 regulation and a new avenue for the development of pharmacological SIRT1 activators targeted at the dissociation of the SIRT1-DBC1 complex.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Sirtuin 1/metabolism , Acrylamides/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/physiology , Amino Acid Sequence , Animals , Blotting, Western , Carbazoles/pharmacology , Cell Line, Tumor , Cells, Cultured , Enzyme Activation/drug effects , HEK293 Cells , Hep G2 Cells , Humans , Mice , Mice, Knockout , Models, Biological , Mutation , NAD/metabolism , Niacinamide/pharmacology , Phosphorylation/drug effects , Piperidines/pharmacology , RNA Interference , Resveratrol , Signal Transduction/drug effects , Signal Transduction/physiology , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/genetics , Stilbenes/pharmacology
9.
J Immunol ; 186(8): 4656-67, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21398609

ABSTRACT

Macrophages serve essential functions as regulators of immunity and homeostasis, and their proliferation contributes to pathogenesis of certain disorders. In this report, we show that induction of macrophage proliferation by the growth factor M-CSF is negatively modulated by agonists that activate the nuclear receptor liver X receptor (LXR), both in vitro and in vivo. Both isoforms LXR α and ß are involved in the antiproliferative actions of LXR ligands in macrophages. In contrast, M-CSF does not exert negative effects on LXR-mediated gene expression. Treatment with LXR agonists results in the accumulation of macrophages in the G(0)/G(1) phase of the cell cycle without affecting ERK-1/2 phosphorylation. The use of small interfering RNA or genetically modified mice revealed that, in contrast to other cellular models, functional expression of either the cyclin-dependent kinase inhibitor p27KIP1 or the cholesterol transporters ATP-binding cassette A1 or ATP-binding cassette G1 was not required for the antiproliferative effects of LXR agonists in macrophages. Western blot analysis revealed that protein expression of key molecules that regulate progression through the cell cycle, such as cyclins D1 and B1 and cyclin-dependent kinases 2 and 4, was downregulated upon LXR activation. These observations suggest a role for LXR agonists in limiting macrophage proliferative responses associated to pathogenic disorders.


Subject(s)
Cell Proliferation , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Macrophages/metabolism , Orphan Nuclear Receptors/metabolism , Animals , Benzoates/pharmacology , Benzylamines/pharmacology , Blotting, Western , Cell Cycle/drug effects , Cells, Cultured , Cyclin B1/metabolism , Cyclin D1/metabolism , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/metabolism , Down-Regulation , Flow Cytometry , HEK293 Cells , Humans , Hydrocarbons, Fluorinated/pharmacology , L Cells , Liver X Receptors , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/cytology , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/genetics , Protein Isoforms/agonists , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...