Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39001036

ABSTRACT

Gear fault detection and remaining useful life estimation are important tasks for monitoring the health of rotating machinery. In this study, a new benchmark for endurance gear vibration signals is presented and made publicly available. The new dataset was used in the HUMS 2023 conference data challenge to test anomaly detection algorithms. A survey of the suggested techniques is provided, demonstrating that traditional signal processing techniques interestingly outperform deep learning algorithms in this case. Of the 11 participating groups, only those that used traditional approaches achieved good results on most of the channels. Additionally, we introduce a signal processing anomaly detection algorithm and meticulously compare it to a standard deep learning anomaly detection algorithm using data from the HUMS 2023 challenge and simulated signals. The signal processing algorithm surpasses the deep learning algorithm on all tested channels and also on simulated data where there is an abundance of training data. Finally, we present a new digital twin that enables the estimation of the remaining useful life of the tested gear from the HUMS 2023 challenge.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Humans , Vibration , Deep Learning
2.
Sensors (Basel) ; 24(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257545

ABSTRACT

One of the common methods for implementing the condition-based maintenance of rotating machinery is vibration analysis. This tutorial describes some of the important signal processing methods existing in the field, which are based on a profound understanding of the component's physical behavior. Furthermore, this tutorial provides Python and MATLAB code examples to demonstrate these methods alongside explanatory videos. The goal of this article is to serve as a practical tutorial, enabling interested individuals with a background in signal processing to quickly learn the important principles of condition-based maintenance of rotating machinery using vibration analysis.

3.
Sensors (Basel) ; 23(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38139730

ABSTRACT

Digital twins play a significant role in Industry 4.0, offering the potential to revolutionize machinery maintenance. In this paper, we introduce a new digital twin designed to address the open problem of predicting gear root crack propagation. This digital twin uses signal processing and model fitting to continuously monitor the condition of the root crack and successfully estimate the remaining time until immediate maintenance is required for the physical asset. The functionality of this new digital twin is demonstrated through the experimental data obtained from a planetary gear, where comparisons are made between the actual and estimated severity of the fault, as well as the remaining time until maintenance. It is shown that the digital twin addresses the open problem of predicting gear root crack propagation.

4.
Front Artif Intell ; 5: 811073, 2022.
Article in English | MEDLINE | ID: mdl-35310955

ABSTRACT

A digital twin is a promising evolving tool for prognostic health monitoring. However, in rotating machinery, the transfer function between the rotating components and the sensor distorts the vibration signal, hence, complicating the ability to apply a digital twin to new systems. This paper demonstrates the importance of estimating the transfer function for a successful transfer across different machines (TDM). Furthermore, there are few algorithms in the literature for transfer function estimation. The current algorithms can estimate the magnitude of the transfer function without its original phase. In this study, a new approach is presented that enables the estimation of the transfer function with its phase for a gear signal. The performance of the new algorithm is demonstrated by measured signals and by a simulated transfer function.

SELECTION OF CITATIONS
SEARCH DETAIL
...