Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 12(23): 14849-14857, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35702205

ABSTRACT

In the present research work, we employed the transfer matrix method (TMM) in addition to MATLAB software to examine the transmission properties of various organic-based one-dimensional (1D) magnetic cold-plasma photonic crystals (MCPPhCs). The proposed structures were found to be made up of periodic layers of organic materials and magnetic cold-plasma (MCP) at normal incidence. An external magnetic field (B) polarized in right-hand (RH) and left-hand (LH) configurations was applied on 1D MCPPhCs. In this study, four organic materials, namely pentane, hexane, heptane, and octane, were chosen to design four 1D photonic crystals (PCs), named as PC1 (pentane-MCP), PC2 (hexane-MCP), PC3 (heptane-MCP), and PC4 (octane-MCP). Our results indicated that the central frequency of the resonant peaks of unit transmission inside the photonic band-gap (PBG) of the respective organic PCs could be tuned towards the higher or lower frequency side by applying B polarized in RH and LH configurations, respectively. We also studied the effect of the period number N to produce closely spaced N-1 transmission channels of unit transmission inside the PBG of all four organic PCs. By increasing the period number N we could increase the number of transmission channels inside the PBG as per our desire. These multiple resonant peaks of unit transmission inside PBG could be easily modulated inside the PBG to accommodate new frequencies by applying B polarized in either RH or LH configurations, respectively. Moreover, our results showed that under the RH configuration, increasing B resulted in a shifting of the resonant peak towards the higher frequency side with a reduction in its full width half maximum (FWHM), whereas the findings were the opposite in the case of increasing B under the LH configuration. These findings may be beneficial for designing externally tuneable organic chemical sensors in the microwave frequency region.

2.
RSC Adv ; 11(52): 32973-32980, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-35493603

ABSTRACT

Organic-compound-based sensors have important applications, such as applications in geothermal power stations, the shoe industry, the extraction of vegetable oil, azeotropic calibration and medical science. Herein, a 1D photonic crystal (PC) with a defect has been used to develop a photonic-technology-based organic compound sensor with optimum performance. The structure of the proposed organic compound sensor consists of a water cavity sandwiched between two symmetric sub-PCs, which are composed of alternate layers of SiO2 and ZnO. The proposed air/(SiO2/ZnO)5/cavity/(SiO2/ZnO)5/glass structure with the optimized structural parameters achieves a quality factor that varies between a minimum value of 4968.2 and a maximum value of 6418.5. The FOM and sensitivity values of the proposed sensing design are on the order of 102 and 103, respectively. The LOD value of the proposed sensor is on the order of 10-5, which is very low, as is always expected for chemical sensing designs. Thus, the simple design and excellent performance make our design highly efficient and suitable for sensing applications in the industrial and biomedical fields.

SELECTION OF CITATIONS
SEARCH DETAIL