Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Comb Sci ; 18(10): 625-629, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27571034

ABSTRACT

DNA-encoded library technology (ELT) is a powerful tool for the discovery of new small-molecule ligands to various protein targets. Here we report the design and synthesis of biaryl DNA-encoded libraries based on the scaffold of 5-formyl 3-iodobenzoic acid. Three reactions on DNA template, acylation, Suzuki-Miyaura coupling and reductive amination, were applied in the library synthesis. The three cycle library of 3.5 million diversity has delivered potent hits for phosphoinositide 3-kinase α (PI3Kα).


Subject(s)
DNA/chemistry , Iodobenzoates/chemistry , Phosphatidylinositol 3-Kinases/chemistry , Small Molecule Libraries/chemical synthesis , Acylation , Amination , Combinatorial Chemistry Techniques , Humans , Ligands , Structure-Activity Relationship
2.
ACS Comb Sci ; 17(12): 722-31, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26562224

ABSTRACT

DNA-encoded small-molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, this technology has been used with soluble protein targets that are produced and used in a purified state. Here, we describe a cell-based method for identifying small-molecule ligands from DNA-encoded libraries against integral membrane protein targets. We use this method to identify novel, potent, and specific inhibitors of NK3, a member of the tachykinin family of G-protein coupled receptors (GPCRs). The method is simple and broadly applicable to other GPCRs and integral membrane proteins. We have extended the application of DNA-encoded library technology to membrane-associated targets and demonstrate the feasibility of selecting DNA-tagged, small-molecule ligands from complex combinatorial libraries against targets in a heterogeneous milieu, such as the surface of a cell.


Subject(s)
Acetates/pharmacology , DNA/chemistry , Quinolines/pharmacology , Receptors, Neurokinin-3/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Acetates/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Ligands , Molecular Structure , Quinolines/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
3.
ACS Med Chem Lett ; 6(5): 531-6, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005528

ABSTRACT

In the search of PI3K p110α wild type and H1047R mutant selective small molecule leads, an encoded library technology (ELT) campaign against the desired target proteins was performed which led to the discovery of a selective chemotype for PI3K isoforms from a three-cycle DNA encoded library. An X-ray crystal structure of a representative inhibitor from this chemotype demonstrated a unique binding mode in the p110α protein.

4.
J Med Chem ; 55(16): 7061-79, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22891645

ABSTRACT

The metalloprotease ADAMTS-5 is considered a potential target for the treatment of osteoarthritis. To identify selective inhibitors of ADAMTS-5, we employed encoded library technology (ELT), which enables affinity selection of small molecule binders from complex mixtures by DNA tagging. Selection of ADAMTS-5 against a four-billion member ELT library led to a novel inhibitor scaffold not containing a classical zinc-binding functionality. One exemplar, (R)-N-((1-(4-(but-3-en-1-ylamino)-6-(((2-(thiophen-2-yl)thiazol-4-yl)methyl)amino)-1,3,5-triazin-2-yl)pyrrolidin-2-yl)methyl)-4-propylbenzenesulfonamide (8), inhibited ADAMTS-5 with IC(50) = 30 nM, showing >50-fold selectivity against ADAMTS-4 and >1000-fold selectivity against ADAMTS-1, ADAMTS-13, MMP-13, and TACE. Extensive SAR studies showed that potency and physicochemical properties of the scaffold could be further improved. Furthermore, in a human osteoarthritis cartilage explant study, compounds 8 and 15f inhibited aggrecanase-mediated (374)ARGS neoepitope release from aggrecan and glycosaminoglycan in response to IL-1ß/OSM stimulation. This study provides the first small molecule evidence for the critical role of ADAMTS-5 in human cartilage degradation.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Cartilage, Articular/drug effects , Databases, Chemical , Osteoarthritis/pathology , Sulfonamides/chemical synthesis , Triazines/chemical synthesis , ADAMTS5 Protein , Aggrecans/metabolism , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Endopeptidases/metabolism , Epitopes , Glycosaminoglycans/metabolism , Humans , In Vitro Techniques , Male , Middle Aged , Osteoarthritis/drug therapy , Rats , Rats, Sprague-Dawley , Small Molecule Libraries , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Triazines/pharmacokinetics , Triazines/pharmacology
5.
Nat Chem Biol ; 5(9): 647-54, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19648931

ABSTRACT

Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.


Subject(s)
DNA/chemistry , Drug Design , Protein Kinase Inhibitors/chemical synthesis , Small Molecule Libraries/chemical synthesis , Animals , Aurora Kinases , Combinatorial Chemistry Techniques , DNA/genetics , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...